Implementing a Variation of the Cubical Set Model

Simon Huber (j.w.w. Cyril Cohen, Thierry Coquand, Anders Mörtberg)

University of Gothenburg

ProgLog Seminar, 26. November 2014

Outline

- 1. Yet another variant of cubical sets
- 2. cubical: a type checker
- 3. Demo!

Cubical Sets: Intuition

Consider a topological space X. A (topological) n-cube in X is a continuous map $[0,1]^n \to X$.

For I a finite set, let X(I) be the continuous maps

$$[0,1]^I \rightarrow X$$

where the elements in I are called names/dimensions.

We want to represent this combinatorially!

Cubical Sets

Let D(I) denote the free De Morgan algebra with generators I. "De Morgan algebra = Boolean algebra minus $\varphi \vee \neg \varphi = 1$ and $\varphi \wedge \neg \varphi = 0$ "

Let \square be the category with

- \triangleright objects: finite sets of names I, J, K, \ldots , and
- ▶ morphisms $I \to J$ given by maps $I \to D(J)$;

A *cubical set* X is a presheaf on \square^{op} , i.e., $X: \square \to \mathbf{Set}$.

Concretely: X is given by sets X(I) and maps

$$X(I) \rightarrow X(J)$$
 for $f: I \rightarrow J$
 $u \mapsto u f$

such that (u f)g = u(f; g) and $u \mathbf{1} = u$.

Cubical Sets

Intuition: $u \in X(I)$ an element depending on names I, and uf as performing the substitution $f: I \to J$.

E.g.,
$$u = u(i,j)$$
 in $X(i,j)$ and $f = (i \mapsto 0, j \mapsto j \land k)$, then uf is $u(0,j \land k)$ in $X(j,k)$.

Think of an element u = u(i,j) in X(i,j) as formally representing a map:

$$[0,1]^{\{i,j\}} \to X$$

 $i \wedge j$ corresponds to $\min(i,j)$, $i \vee j$ to $\max(i,j)$, and $\neg i$ to 1-i.

Faces and Degeneracies

For i in I there are two maps $(i0), (i1): I \rightarrow I - i$, sending i to 0 (or 1). For u in X(I), u(i0) and u(i1) are faces of u

$$u(i0) \xrightarrow{u} u(i1)$$

▶ For *j* not in *I*, the inclusion ι_j : $I \to I, j$ induces degeneracies.

Connections, Diagonals, and Symmetry

▶ For u = u(i) in X(i), the cube $u(i \land j)$ connects u(0) to u(i)

$$u(0) \xrightarrow{u(i)} u(1)$$

$$u(0) \uparrow \qquad u(i \land j) \qquad \uparrow u(j)$$

$$u(0) \xrightarrow{u(0)} u(0)$$

- For u = u(i,j) in X(i,j), u(k,k) is the diagonal of u, connecting u(0,0) to u(1,1).
- ▶ (For u = u(i) in X(i), $u(\neg i)$ connects u(1) to u(0).)

Path Space

For a cubical set X the path space $Path_X$ given by:

- ▶ $\langle i \rangle w \in (\text{Path}_X)(I)$ where $i \notin I$ and $w \in X(I,i)$; i is bound in $\langle i \rangle w$;
- ► $(\langle i \rangle w)f = \langle j \rangle wf'$ for $f: I \rightarrow J$, and $f' = (f, i = j): I, i \rightarrow J, j, j$ fresh.

Path_X is $X^{\mathbb{I}}$ where $\mathbb{I}(J) = \mathsf{D}(J)$ the interval.

Fixing the endpoints gives an interpretation for $Id_X(u, v)$.

Kan Operations

To get the interpretation we need to require composition operations: for

$$u_{jb}$$
 in $X(I - j)$
 u_{i0} in $X(I - i)$
s.t. $u_{jb}(i0) = u_{i0}(jb)$

we require

$$u_{i1} = \mathsf{comp}_{\vec{u}}^i(u_{i0}) \in X(I-i)$$

where \vec{u} , u_{i0} specifies an "open box" and u_{i1} is its "lid".

Additionally, we need that if \vec{u} is constant (i.e., degenerate) along the direction i, then $u_{i0}=u_{i1}$.

Moreover: $(comp_{\vec{u}}^i(u_{i0}))f = comp_{\vec{u}f'}^j(u_{i0}f)$ (uniformity conditions)

Kan Fillings

Fillings can be derived using connections:

$$ext{fill}_{ec{u}}^i(u_{i0}) \in X(I) \ ext{fill}_{ec{u}}^i(u_{i0}) = ext{comp}_{ec{u}(i=i \wedge j)}^j(u_{i0}) \qquad (j ext{ fresh})$$

We get a model of type theory with $\Pi, \Sigma, \mathrm{Id}, U$ satisfying univalence.

Overview of Cubical

- Proof assistant based on the cubical set model.
- ► The Univalence Axiom and functional extensionality are available and compute!
- ► No indexed-families, but recursive definitions, and Id-types are a primitive notion
- Supports Higher Inductive Types (experimental)
- Available at https://github.com/simhu/cubical (branch connections_hsplit)

Terms

$$r,s,t,A,F ::= x \mid rs \mid \lambda x \ t \mid \Pi AF \mid U$$

$$\mid c\vec{t} \mid \text{sum}\{c(\vec{x}:\vec{A})|\dots\} \mid \text{split}\{c\vec{x} \to t;\dots\}$$

$$\mid t \text{ where } \vec{x}:\vec{A} = \vec{t}$$

$$\dots$$

$$\mid \text{PN}$$

Primitive notions

$$PN ::= Id \mid refl \mid Ext \mid TransU \mid IsoId \mid \dots$$

Values

```
\begin{array}{l} u,v,w ::= t\rho \mid u \, v \mid \mathrm{Id}_u(v,w) \mid \Pi \, u \, v \mid U \\ \mid c \vec{u} \\ \mid \langle i \rangle u \mid \mathrm{comp}_{w,\vec{u}}^i(u_{i0}) \\ \mid \mathrm{ext} \, v_0 \, v_1 \, w \, \varphi \\ \mid x \mid u \, v \mid u \, \varphi \mid \dots \end{array} \qquad \text{(neutral values)} \\ \dots \end{array}
```

On values we can define actions of cubical sets $u(i = i \land j)$, u(i0), etc. Any value u depends only on a finite set of names supp(u).

Evaluation and Operational Semantics

 $t\rho$ for eval ρ t

$$(\operatorname{refl} At)
ho = \langle i \rangle \, t
ho \ (\operatorname{Ext} f g \,
ho)
ho = \langle i \rangle \operatorname{ext} (f
ho) \, (g
ho) \, (p
ho) \, i \ (\operatorname{TransU}_{A,B} p \, a)
ho = \operatorname{comp}_{(p
ho) \, i}^{i} (a
ho) \ dots$$

Operational semantics:

$$(\lambda xt)
ho\,u o t(
ho,x=u)$$
 ext $u_0\,u_1\,v\,0 o u_0$ ext $u_0\,u_1\,v\,1 o u_1$

 $\mathsf{comp}^i_{w \vec{n}}(u_{i0})$ is explained depending on the shape of w

Structure

Bidirectional type checking:

$$ho, \Gamma \vdash t \uparrow v$$
 type checking $ho, \Gamma \vdash t \downarrow v$ type inference

where: t is a term, v is a value (ρ an environment, Γ assigns values to the types of variables)

$$\frac{\rho,\Gamma\vdash t\downarrow v'\quad v'\equiv v}{\rho,\Gamma\vdash t\uparrow v}$$

 $(v \equiv v' \text{ checks conversion of } values)$

Extension: Higher Inductive Types

HITs

Two types of constructors:

object constructors (e.g., base)

$$c(x_1:A_1)\ldots(x_n:A_n)$$

path constructors (here loop);

$$pc(x_1 : A_1) ... (x_n : A_n) @ e_1 \sim e_2$$

 e_1 and e_2 are the end-points (whose type has to be the data type we are defining)

no path constructors for higher identities

HITs: hsplit

```
S1rec : (F : S1 -> U) (b : F base)
        (1 : IdS S1 F base base loop b b)
        (x : S1) -> F x
S1rec F b l = hsplit F with
  base -> b
  loop -> 1
IdS is heterogeneous equality:
IdS : (A : U) (F : A -> U) (a0 a1 : A)
      (p : Id A a0 a1) ->
      F a0 -> F a1 -> U
```