
Implementing a Variation of the Cubical Set
Model

Simon Huber
(j.w.w. Cyril Cohen, Thierry Coquand, Anders Mörtberg)
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Outline

1. Yet another variant of cubical sets

2. cubical: a type checker

3. Demo!



Cubical Sets: Intuition

Consider a topological space X . A (topological) n-cube in X is a
continuous map [0, 1]n → X .
For I a finite set, let X (I ) be the continuous maps

[0, 1]I → X

where the elements in I are called names/dimensions.

We want to represent this combinatorially!



Cubical Sets

Let D(I ) denote the free De Morgan algebra with generators I .
“De Morgan algebra = Boolean algebra minus ϕ ∨ ¬ϕ = 1 and
ϕ ∧ ¬ϕ = 0”

Let ��� be the category with

I objects: finite sets of names I , J,K , . . . , and

I morphisms I → J given by maps I → D(J);

A cubical set X is a presheaf on ���op, i.e., X : ���→ Set.

Concretely: X is given by sets X (I ) and maps

X (I )→ X (J) for f : I → J

u 7→ u f

such that (u f )g = u(f ; g) and u 1 = u.



Cubical Sets

Intuition: u ∈ X (I ) an element depending on names I , and u f as
performing the substitution f : I → J.

E.g., u = u(i , j) in X (i , j) and f = (i 7→ 0, j 7→ j ∧ k), then
uf is u(0, j ∧ k) in X (j , k).

Think of an element u = u(i , j) in X (i , j) as formally representing
a map:

[0, 1]{i ,j} → X

i ∧ j corresponds to min(i , j), i ∨ j to max(i , j), and ¬i to 1− i .



Faces and Degeneracies

I For i in I there are two maps (i0), (i1) : I → I − i , sending i
to 0 (or 1). For u in X (I ), u(i0) and u(i1) are faces of u

u(i0) u(i1)u

I For j not in I , the inclusion ιj : I → I , j induces degeneracies.



Connections, Diagonals, and Symmetry

I For u = u(i) in X (i), the cube u(i ∧ j) connects u(0) to u(i)

u(0) u(1)

u(i ∧ j)

u(0) u(0)

u(i)

u(0)

u(0)

u(j)

I For u = u(i , j) in X (i , j), u(k , k) is the diagonal of u,
connecting u(0, 0) to u(1, 1).

I (For u = u(i) in X (i), u(¬i) connects u(1) to u(0).)



Path Space

For a cubical set X the path space PathX given by:

I 〈i〉w ∈ (PathX )(I ) where i /∈ I and w ∈ X (I , i); i is bound in
〈i〉w ;

I (〈i〉w)f = 〈j〉wf ′ for f : I → J, and
f ′ = (f , i = j) : I , i → J, j , j fresh.

PathX is X I where I(J) = D(J) the interval.

Fixing the endpoints gives an interpretation for IdX (u, v).



Kan Operations

To get the interpretation we need to require composition
operations: for

ujb in X (I − j)

ui0 in X (I − i)

s.t. ujb(i0) = ui0(jb)

we require

ui1 = compi
~u(ui0) ∈ X (I − i)

where ~u, ui0 specifies an “open box” and ui1 is its “lid”.

Additionally, we need that if ~u is constant (i.e., degenerate) along
the direction i , then ui0 = ui1.
Moreover: (compi

~u(ui0))f = compj
~uf ′(ui0f ) (uniformity conditions)



Kan Fillings

Fillings can be derived using connections:

filli~u(ui0) ∈ X (I )

filli~u(ui0) = compj~u(i=i∧j)(ui0) (j fresh)

We get a model of type theory with Π,Σ, Id,U satisfying
univalence.



Overview of Cubical

I Proof assistant based on the cubical set model.

I The Univalence Axiom and functional extensionality are
available and compute!

I No indexed-families, but recursive definitions, and Id-types
are a primitive notion

I Supports Higher Inductive Types (experimental)

I Available at https://github.com/simhu/cubical
(branch connections hsplit)



Terms

r , s, t,A,F ::= x | r s | λx t | ΠAF | U

| c~t | sum{c(~x : ~A)| . . . } | split{c~x → t; . . . }

| t where~x : ~A = ~t

. . .

| PN

Primitive notions

PN ::= Id | refl | Ext | TransU | IsoId | . . .



Values

u, v ,w ::= tρ | u v | Idu(v ,w) | Π u v | U
| c~u
| 〈i〉u | compi

w ,~u(ui0)

| ext v0 v1 w ϕ

| x | u v | u ϕ | . . . (neutral values)

. . .

On values we can define actions of cubical sets u(i = i ∧ j), u(i0),
etc. Any value u depends only on a finite set of names supp(u).



Evaluation and Operational Semantics

tρ for eval ρ t

(reflAt)ρ = 〈i〉 tρ
(Ext f g p)ρ = 〈i〉 ext (f ρ) (gρ) (pρ) i

(TransUA,B p a)ρ = compi
(pρ) i (aρ)

...

Operational semantics:

(λxt)ρ u → t(ρ, x = u)

ext u0 u1 v 0→ u0

ext u0 u1 v 1→ u1

. . .

compi
w ,~u(ui0) is explained depending on the shape of w



Structure

Bidirectional type checking:

ρ, Γ ` t ↑ v type checking

ρ, Γ ` t ↓ v type inference

where: t is a term, v is a value (ρ an environment, Γ assigns
values to the types of variables)

ρ, Γ ` t ↓ v ′ v ′ ≡ v

ρ, Γ ` t ↑ v
(v ≡ v ′ checks conversion of values)



Extension: Higher Inductive Types

Example: the circle S1

S1 : U

hdata S1 = base

| loop @ base ~ base

loop’ : Id S1 base base

loop’ = loop



HITs

Two types of constructors:

I object constructors (e.g., base)

c (x1 : A1) . . . (xn : An)

I path constructors (here loop);

pc (x1 : A1) . . . (xn : An) @ e1 ∼ e2

e1 and e2 are the end-points (whose type has to be the data
type we are defining)

I no path constructors for higher identities



HITs: hsplit

S1rec : (F : S1 -> U) (b : F base)

(l : IdS S1 F base base loop b b)

(x : S1) -> F x

S1rec F b l = hsplit F with

base -> b

loop -> l

IdS is heterogeneous equality:

IdS : (A : U) (F : A -> U) (a0 a1 : A)

(p : Id A a0 a1) ->

F a0 -> F a1 -> U


