Implementing a Variation of the Cubical Set
Model

Simon Huber
(j-w.w. Cyril Cohen, Thierry Coquand, Anders Méortberg)

University of Gothenburg

Proglog Seminar, 26. November 2014

Outline

1. Yet another variant of cubical sets
2. cubical: a type checker
3. Demo!

Cubical Sets: Intuition

Consider a topological space X. A (topological) n-cube in X is a
continuous map [0,1]" — X.
For I a finite set, let X(/) be the continuous maps

[0,1] — X
where the elements in / are called names/dimensions.

We want to represent this combinatorially!

Cubical Sets

Let D(/) denote the free De Morgan algebra with generators /.
“De Morgan algebra = Boolean algebra minus ¢V =¢p =1 and
(p /\ _\w — 0”

Let O be the category with
» objects: finite sets of names /, J, K, ..., and
» morphisms | — J given by maps | — D(J);
A cubical set X is a presheaf on [I°P, i.e., X: [0 — Set.

Concretely: X is given by sets X(/) and maps

X(1) — X(J) for f: 1 —J
u—uf

such that (uf)g = u(f;g) and ul = u.

Cubical Sets

Intuition: u € X(/) an element depending on names /, and uf as
performing the substitution f: | — J.

E.g., u=u(i,j)in X(i,j) and f = (i = 0,j — j A k), then
uf is u(0,5 A k) in X(j, k).

Think of an element u = u(i,j) in X(i,j) as formally representing

a map: N
[0,1]0} = x

i A j corresponds to min(i,j), i Vj to max(i,j), and =i to 1 — i.

Faces and Degeneracies

» For i in [there are two maps (i0), (i1): | — | — i, sending i
to 0 (or 1). For win X(/), u(i0) and u(il) are faces of u

u(i0) ———— u(il)

» For j not in I, the inclusion ¢;: | — [, j induces degeneracies.

Connections, Diagonals, and Symmetry

» For u = u(i) in X(i), the cube u(i A j) connects u(0) to u(i)

u(0) — 4 y(1)

u(O)T u(i A j) Tu(j)

u(0) —9 o)
» For u= u(i,j) in X(i,j), u(k, k) is the diagonal of u,
connecting u(0,0) to u(1,1).
» (For u= u(i) in X(i), u(—i) connects u(1) to u(0).)

Path Space

For a cubical set X the path space Pathy given by:
iyw € (Pathx)(/) where i ¢ | and w € X(/,); i is bound in
NHw;
» ((Yw)f = () wf’ for f: | — J, and
f'=(fi=j):1,i— J,j, j fresh.
Pathy is X where I(J) = D(J) the interval.

>

o~ o~

Fixing the endpoints gives an interpretation for Idx(u, v).

Kan Operations

To get the interpretation we need to require composition
operations: for

Ujp in X(/ —_j)
Ujo in X(/ — i)
s.t. Ujb(iO) = u,-o(jb)

we require

Uiy = compl(uio) € X(I — i)
where U, ujg specifies an “open box" and u;1 is its “lid”.
Additionally, we need that if i is constant (i.e., degenerate) along

the direction /, then ujo = uj1.
Moreover: (comp’(ujo))f = compl,,(ujof) (uniformity conditions)

Kan Fillings

Fillings can be derived using connections:

fill(ui0) € X(1)
fill(uio) = comply;_. (i)~ (j fresh)

We get a model of type theory with M, X, Id, U satisfying
univalence.

Overview of Cubical

» Proof assistant based on the cubical set model.

» The Univalence Axiom and functional extensionality are
available and compute!

» No indexed-families, but recursive definitions, and Id-types
are a primitive notion

» Supports Higher Inductive Types (experimental)

> Available at https://github.com/simhu/cubical
(branch connections_hsplit)

Terms

r,s,t, A F i=x|rs | Axt|MAF | U
| ¢t | sum{c(%: A)|...} | split{cX — t;...}
| twhereX: A=1
| PN
Primitive notions

PN ::=1d | refl | Ext | TransU | IsoId | ...

Values

u,v,w=tp|uv|Id,(v,w)|Nuv|U
| cu
| (i)u | compi, (uio)
|ext vyviwe

| x|uv|ue]|... (neutral values)

On values we can define actions of cubical sets u(i = i A j), u(i0),
etc. Any value u depends only on a finite set of names supp(u).

Evaluation and Operational Semantics
tp for evalpt

(refl At)p = (i) tp
(Ext f g p)p = (i) ext (fp) (gp) (pp) i
(TransUagpa)p = compépp) (ap)

Operational semantics:

(Axt)pu — t(p,x = u)
extugur v0 — ug

extuumvly —

comp(N #(uio) is explained depending on the shape of w

Structure

Bidirectional type checking:

p,T=ttv type checking
p,T=tlv type inference

where: t is a term, v is a value (p an environment, I' assigns
values to the types of variables)

p, TtV V=v
p,THFttv

(v = v/ checks conversion of values)

Extension: Higher Inductive Types

Example: the circle S?

S1 : 0
hdata S1 = base
| loop @ base ~ base

loop’ : Id S1 base base
loop’ = loop

HITs

Two types of constructors:

» object constructors (e.g., base)
c(xy:A1)...(xn: Ap)
» path constructors (here loop);
pc(xi:A1)...(xn: Ap) @e; ~ &

e1 and e, are the end-points (whose type has to be the data
type we are defining)

» no path constructors for higher identities

HITs: hsplit

Sirec : (F : S1 -> U) (b : F base)
(1 : IdS S1 F base base loop b b)
(x : 81) > F x
Slrec F b 1 = hsplit F with
base -> b
loop > 1

IdS is heterogeneous equality:

IdS : (A : U) (F: A->10) (a0 a1l : A)
(p : Id A a0 al) —>
F a0 ->F al > U

