Implementing a Variation of the Cubical Set Model

Simon Huber
(j.w.w. Cyril Cohen, Thierry Coquand, Anders Mörtberg)
University of Gothenburg
ProgLog Seminar, 26. November 2014

Outline

1. Yet another variant of cubical sets
2. cubical: a type checker
3. Demo!

Cubical Sets: Intuition

Consider a topological space X. A (topological) n-cube in X is a continuous map $[0,1]^{n} \rightarrow X$.
For I a finite set, let $X(I)$ be the continuous maps

$$
[0,1]^{\prime} \rightarrow X
$$

where the elements in I are called names/dimensions.
We want to represent this combinatorially!

Cubical Sets

Let $\mathrm{D}(I)$ denote the free De Morgan algebra with generators I. "De Morgan algebra $=$ Boolean algebra minus $\varphi \vee \neg \varphi=1$ and $\varphi \wedge \neg \varphi=0 "$

Let \square be the category with

- objects: finite sets of names I, J, K, \ldots, and
- morphisms $I \rightarrow J$ given by maps $I \rightarrow \mathrm{D}(J)$;

A cubical set X is a presheaf on $\square^{\text {op }}$, i.e., $X: \square \rightarrow$ Set.
Concretely: X is given by sets $X(I)$ and maps

$$
\begin{aligned}
X(I) & \rightarrow X(J) \quad \text { for } f: I \rightarrow J \\
u & \mapsto u f
\end{aligned}
$$

such that $(u f) g=u(f ; g)$ and $u \mathbf{1}=u$.

Cubical Sets

Intuition: $u \in X(I)$ an element depending on names I, and $u f$ as performing the substitution $f: I \rightarrow J$.

$$
\begin{aligned}
& \text { E.g., } u=u(i, j) \text { in } X(i, j) \text { and } f=(i \mapsto 0, j \mapsto j \wedge k) \text {, then } \\
& \quad u f \text { is } u(0, j \wedge k) \text { in } X(j, k) \text {. }
\end{aligned}
$$

Think of an element $u=u(i, j)$ in $X(i, j)$ as formally representing a map:

$$
[0,1]^{\{i, j\}} \rightarrow X
$$

$i \wedge j$ corresponds to $\min (i, j), i \vee j$ to $\max (i, j)$, and $\neg i$ to $1-i$.

Faces and Degeneracies

- For i in I there are two maps ($i 0$), ($i 1$): $I \rightarrow I-i$, sending i to 0 (or 1). For u in $X(I), u(i 0)$ and $u(i 1)$ are faces of u

$$
u(i 0) \xrightarrow{u} u(i 1)
$$

- For j not in I, the inclusion $\iota_{j}: I \rightarrow I, j$ induces degeneracies.

Connections, Diagonals, and Symmetry

- For $u=u(i)$ in $X(i)$, the cube $u(i \wedge j)$ connects $u(0)$ to $u(i)$

- For $u=u(i, j)$ in $X(i, j), u(k, k)$ is the diagonal of u, connecting $u(0,0)$ to $u(1,1)$.
- (For $u=u(i)$ in $X(i), u(\neg i)$ connects $u(1)$ to $u(0)$.)

Path Space

For a cubical set X the path space Path_{X} given by:

- $\langle i\rangle w \in\left(\operatorname{Path}_{X}\right)(I)$ where $i \notin I$ and $w \in X(I, i) ; i$ is bound in $\langle i\rangle w$;
- $(\langle i\rangle w) f=\langle j\rangle w f^{\prime}$ for $f: I \rightarrow J$, and $f^{\prime}=(f, i=j): I, i \rightarrow J, j, j$ fresh.
Path X is $X^{\mathbb{I}}$ where $\mathbb{I}(J)=\mathrm{D}(J)$ the interval.
Fixing the endpoints gives an interpretation for $\operatorname{Id}_{X}(u, v)$.

Kan Operations

To get the interpretation we need to require composition operations: for

$$
\begin{aligned}
& u_{j b} \text { in } X(I-j) \\
& u_{i 0} \text { in } X(I-i) \\
& \text { s.t. } u_{j b}(i 0)=u_{i 0}(j b)
\end{aligned}
$$

we require

$$
u_{i 1}=\operatorname{comp}_{\vec{u}}^{i}\left(u_{i 0}\right) \in X(I-i)
$$

where $\vec{u}, u_{i 0}$ specifies an "open box" and $u_{i 1}$ is its "lid".
Additionally, we need that if \vec{u} is constant (i.e., degenerate) along the direction i, then $u_{i 0}=u_{i 1}$.
Moreover: $\left(\operatorname{comp}_{\vec{u}}^{i}\left(u_{i 0}\right)\right) f=\operatorname{comp}_{\vec{u} f^{\prime}}^{j}\left(u_{i 0} f\right)$ (uniformity conditions)

Kan Fillings

Fillings can be derived using connections:

$$
\begin{aligned}
& \operatorname{fill}_{\vec{u}}^{i}\left(u_{i 0}\right) \in X(I) \\
& \operatorname{fill}_{\vec{u}}^{i}\left(u_{i 0}\right)=\operatorname{comp}_{\vec{u}(i=i \wedge j)}^{j}\left(u_{i 0}\right) \quad(j \text { fresh })
\end{aligned}
$$

We get a model of type theory with $\Pi, \Sigma, I d, U$ satisfying univalence.

Overview of Cubical

- Proof assistant based on the cubical set model.
- The Univalence Axiom and functional extensionality are available and compute!
- No indexed-families, but recursive definitions, and Id-types are a primitive notion
- Supports Higher Inductive Types (experimental)
- Available at https://github.com/simhu/cubical (branch connections_hsplit)

Terms

$$
\begin{aligned}
r, s, t, A, F:: & x|r s| \lambda x t|\Pi A F| U \\
& |c \vec{t}| \operatorname{sum}\{c(\vec{x}: \vec{A}) \mid \ldots\} \mid \operatorname{split}\{c \vec{x} \rightarrow t ; \ldots\} \\
& \mid t \text { where } \vec{x}: \vec{A}=\vec{t} \\
& \ldots \\
& \mid \text { PN }
\end{aligned}
$$

Primitive notions

$$
P N::=\operatorname{Id} \mid \text { refl } \mid \text { Ext } \mid \text { TransU } \mid \text { IsoId } \mid \ldots
$$

Values

$$
\begin{aligned}
u, v, w:: & t \rho|u v| \operatorname{Id}_{u}(v, w)|\Pi u v| U \\
& \mid c \vec{u} \\
& |\langle i\rangle u| \operatorname{comp}_{w, \vec{u}}^{i}\left(u_{i 0}\right) \\
& \mid \operatorname{ext}_{0} v_{1} w \varphi \\
& |x| u v|u \varphi| \ldots \quad \text { (neutral values) }
\end{aligned}
$$

On values we can define actions of cubical sets $u(i=i \wedge j), u(i 0)$, etc. Any value u depends only on a finite set of names $\operatorname{supp}(u)$.

Evaluation and Operational Semantics

$t \rho$ for eval ρt

$$
\begin{aligned}
(\operatorname{refl} A t) \rho & =\langle i\rangle t \rho \\
(\operatorname{Ext} f g p) \rho & =\langle i\rangle \operatorname{ext}(f \rho)(g \rho)(p \rho) i \\
\left(\operatorname{TransU} U_{A, B} p a\right) \rho & =\operatorname{comp}_{(p \rho) i}^{i}(a \rho)
\end{aligned}
$$

Operational semantics:

$$
\begin{aligned}
\quad(\lambda x t) \rho u & \rightarrow t(\rho, x=u) \\
\operatorname{ext} u_{0} u_{1} v 0 & \rightarrow u_{0} \\
\operatorname{ext} u_{0} u_{1} v 1 & \rightarrow u_{1}
\end{aligned}
$$

$\operatorname{comp}_{w, \vec{u}}^{i}\left(u_{i 0}\right)$ is explained depending on the shape of w

Structure

Bidirectional type checking:

$$
\begin{array}{ll}
\rho, \Gamma \vdash t \uparrow v & \text { type checking } \\
\rho, \Gamma \vdash t \downarrow v & \text { type inference }
\end{array}
$$

where: t is a term, v is a value (ρ an environment, Γ assigns values to the types of variables)

$$
\frac{\rho, \Gamma \vdash t \downarrow v^{\prime} \quad v^{\prime} \equiv v}{\rho, \Gamma \vdash t \uparrow v}
$$

($v \equiv v^{\prime}$ checks conversion of values)

Extension: Higher Inductive Types

Example: the circle S^{1}
S1 : U
hdata S 1 = base
| loop © base ~ base
loop' : Id S1 base base
loop' = loop

HITs

Two types of constructors:

- object constructors (e.g., base)

$$
c\left(x_{1}: A_{1}\right) \ldots\left(x_{n}: A_{n}\right)
$$

- path constructors (here loop);

$$
\operatorname{pc}\left(x_{1}: A_{1}\right) \ldots\left(x_{n}: A_{n}\right) @ e_{1} \sim e_{2}
$$

e_{1} and e_{2} are the end-points (whose type has to be the data type we are defining)

- no path constructors for higher identities

HITs: hsplit

```
S1rec : (F : S1 -> U) (b : F base)
    (l : IdS S1 F base base loop b b)
    (x : S1) -> F x
S1rec F b l = hsplit F with
    base -> b
    loop -> l
```

IdS is heterogeneous equality:
IdS : (A : U) (F : A -> U) (a0 a1 : A)
(p : Id A a0 a1) ->

$$
\text { F a0 } \rightarrow \mathrm{F} \text { a1 } \rightarrow \mathrm{U}
$$

