
Implementing a Variation of the Cubical Set
Model

Simon Huber
(j.w.w. Cyril Cohen, Thierry Coquand, Anders Mörtberg)

University of Gothenburg

ProgLog Seminar, 26. November 2014

Outline

1. Yet another variant of cubical sets

2. cubical: a type checker

3. Demo!

Cubical Sets: Intuition

Consider a topological space X . A (topological) n-cube in X is a
continuous map [0, 1]n → X .
For I a finite set, let X (I) be the continuous maps

[0, 1]I → X

where the elements in I are called names/dimensions.

We want to represent this combinatorially!

Cubical Sets

Let D(I) denote the free De Morgan algebra with generators I .
“De Morgan algebra = Boolean algebra minus ϕ ∨ ¬ϕ = 1 and
ϕ ∧ ¬ϕ = 0”

Let ��� be the category with

I objects: finite sets of names I , J,K , . . . , and

I morphisms I → J given by maps I → D(J);

A cubical set X is a presheaf on ���op, i.e., X : ���→ Set.

Concretely: X is given by sets X (I) and maps

X (I)→ X (J) for f : I → J

u 7→ u f

such that (u f)g = u(f ; g) and u 1 = u.

Cubical Sets

Intuition: u ∈ X (I) an element depending on names I , and u f as
performing the substitution f : I → J.

E.g., u = u(i , j) in X (i , j) and f = (i 7→ 0, j 7→ j ∧ k), then
uf is u(0, j ∧ k) in X (j , k).

Think of an element u = u(i , j) in X (i , j) as formally representing
a map:

[0, 1]{i ,j} → X

i ∧ j corresponds to min(i , j), i ∨ j to max(i , j), and ¬i to 1− i .

Faces and Degeneracies

I For i in I there are two maps (i0), (i1) : I → I − i , sending i
to 0 (or 1). For u in X (I), u(i0) and u(i1) are faces of u

u(i0) u(i1)u

I For j not in I , the inclusion ιj : I → I , j induces degeneracies.

Connections, Diagonals, and Symmetry

I For u = u(i) in X (i), the cube u(i ∧ j) connects u(0) to u(i)

u(0) u(1)

u(i ∧ j)

u(0) u(0)

u(i)

u(0)

u(0)

u(j)

I For u = u(i , j) in X (i , j), u(k , k) is the diagonal of u,
connecting u(0, 0) to u(1, 1).

I (For u = u(i) in X (i), u(¬i) connects u(1) to u(0).)

Path Space

For a cubical set X the path space PathX given by:

I 〈i〉w ∈ (PathX)(I) where i /∈ I and w ∈ X (I , i); i is bound in
〈i〉w ;

I (〈i〉w)f = 〈j〉wf ′ for f : I → J, and
f ′ = (f , i = j) : I , i → J, j , j fresh.

PathX is X I where I(J) = D(J) the interval.

Fixing the endpoints gives an interpretation for IdX (u, v).

Kan Operations

To get the interpretation we need to require composition
operations: for

ujb in X (I − j)

ui0 in X (I − i)

s.t. ujb(i0) = ui0(jb)

we require

ui1 = compi
~u(ui0) ∈ X (I − i)

where ~u, ui0 specifies an “open box” and ui1 is its “lid”.

Additionally, we need that if ~u is constant (i.e., degenerate) along
the direction i , then ui0 = ui1.
Moreover: (compi

~u(ui0))f = compj
~uf ′(ui0f) (uniformity conditions)

Kan Fillings

Fillings can be derived using connections:

filli~u(ui0) ∈ X (I)

filli~u(ui0) = compj~u(i=i∧j)(ui0) (j fresh)

We get a model of type theory with Π,Σ, Id,U satisfying
univalence.

Overview of Cubical

I Proof assistant based on the cubical set model.

I The Univalence Axiom and functional extensionality are
available and compute!

I No indexed-families, but recursive definitions, and Id-types
are a primitive notion

I Supports Higher Inductive Types (experimental)

I Available at https://github.com/simhu/cubical
(branch connections hsplit)

Terms

r , s, t,A,F ::= x | r s | λx t | ΠAF | U

| c~t | sum{c(~x : ~A)| . . . } | split{c~x → t; . . . }

| t where~x : ~A = ~t

. . .

| PN

Primitive notions

PN ::= Id | refl | Ext | TransU | IsoId | . . .

Values

u, v ,w ::= tρ | u v | Idu(v ,w) | Π u v | U
| c~u
| 〈i〉u | compi

w ,~u(ui0)

| ext v0 v1 w ϕ

| x | u v | u ϕ | . . . (neutral values)

. . .

On values we can define actions of cubical sets u(i = i ∧ j), u(i0),
etc. Any value u depends only on a finite set of names supp(u).

Evaluation and Operational Semantics

tρ for eval ρ t

(reflAt)ρ = 〈i〉 tρ
(Ext f g p)ρ = 〈i〉 ext (f ρ) (gρ) (pρ) i

(TransUA,B p a)ρ = compi
(pρ) i (aρ)

...

Operational semantics:

(λxt)ρ u → t(ρ, x = u)

ext u0 u1 v 0→ u0

ext u0 u1 v 1→ u1

. . .

compi
w ,~u(ui0) is explained depending on the shape of w

Structure

Bidirectional type checking:

ρ, Γ ` t ↑ v type checking

ρ, Γ ` t ↓ v type inference

where: t is a term, v is a value (ρ an environment, Γ assigns
values to the types of variables)

ρ, Γ ` t ↓ v ′ v ′ ≡ v

ρ, Γ ` t ↑ v
(v ≡ v ′ checks conversion of values)

Extension: Higher Inductive Types

Example: the circle S1

S1 : U

hdata S1 = base

| loop @ base ~ base

loop’ : Id S1 base base

loop’ = loop

HITs

Two types of constructors:

I object constructors (e.g., base)

c (x1 : A1) . . . (xn : An)

I path constructors (here loop);

pc (x1 : A1) . . . (xn : An) @ e1 ∼ e2

e1 and e2 are the end-points (whose type has to be the data
type we are defining)

I no path constructors for higher identities

HITs: hsplit

S1rec : (F : S1 -> U) (b : F base)

(l : IdS S1 F base base loop b b)

(x : S1) -> F x

S1rec F b l = hsplit F with

base -> b

loop -> l

IdS is heterogeneous equality:

IdS : (A : U) (F : A -> U) (a0 a1 : A)

(p : Id A a0 a1) ->

F a0 -> F a1 -> U

