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Univalent Foundations

» Vladimir Voevodsky formulated the Univalence Axiom (UA) in
Martin-Lof Type Theory as a strong form of the Axiom of
Extensionality.

» UA is classically justified by the interpretation of types as Kan
simplicial sets

» However, this justification uses non-constructive steps. Hence
this does not provide a way to compute with univalence.



Result

We give a model of dependent type theory (I, X, U, N, ...) ina
constructive metatheory with:

» refla: Ida(a,a)

» J(a): C(a,refla) — (Mx: A)(Mp: Ida(a, x)) C(x,p)
> JEq(a,e) : Idc(arer1a)(J(a € a,refl a), €)

» Univalence Axiom

» Propositional Truncation + Circle + Interval



Implementation: Cubical
(jww C. Cohen, T. Coquand, A. Mértberg)

» Prototype proof assistant implemented in Haskell

> The Univalence Axiom and functional extensionality are
available and compute!

» Try it! http://github.com/simhu/cubical
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Cubical Category

We define the cubical category C as follows.
Fix a countable set of symbols (or atoms) x, y, z, ... distinct from
0,1.

C is given by:
» objects are finite (decidable) sets of symbols /, J, K, ...

» a morphism f: | — J is given by a set map
f:1—Ju{o,1}

such that if f(x),f(y) € J, then f(x) = f(y) implies x = y
(f is injective on its defined elements.)

This represents a substitution: assign values 0 or 1 to
variables or rename them.



Cubical Category

» Composition of f: I — J and g: J — K defined by

g(fx) f defined on x,

fx otherwise;

(gof)(X)Z{

We write fg for go f.



Cubical Sets

Definition
A cubical set X is a functor X: C — Set.

So a cubical set X is given by sets X(/) for each /, and maps
X(l) — X(J), ar> af for f: | — J with

al=a and (af)g = a(fg).

Call an element of X (/) and /-cube.



Example: Polynomial Ring (P. Aczel)

If k is a ring, then k[x,y,z,...] is a cubical set.
» a (-cube, or point, is an element of k
> a x-cube, or line, is an element of k[x]

> a x, y-cube, or square, is an element of k[x, y]
> ..

v

an /-cube for I = xq,...,xy is an element of k[xy, ..., xp]



Cubical Sets

Think of a symbol x as a name for an indeterminate and
» X(0) as points,
{x}) as lines in dimension x,

» X(
» X({x,y}) as squares in the dimensions x, y,
» X({x,y,z}) as cubes,

>



Cubical Sets: Faces

For x € I the morphisms (x = 0),(x =1): | — | — x in C sending
x to 0 and 1 respectively induce the face maps

X(x=0),X(x=1): X(I) = X(I —x)
An [-cube 6 of X connects its two faces §(x = 0) and 6(x = 1):

O(x =0) ——— O(x=1)



Cubical Sets: Degeneracies

f: 1 — Jis a degeneracy morphism if f is defined on all elements
in/and/ CJ.

If x ¢ I, consider the inclusion s,: | — I, x. We have
sx(x =0) =1 =s,(x =1), and so for an /-cube « of X:

If B = asy is such a degenerate /, x-cube, we can think of 3 to be
independent of the indeterminate x.



Cubical Sets

Remark

» Kan's original approach (1955) to combinatorial homotopy
theory used cubical sets



Our notion is equivalent to nominal sets with 01-substitions
(Pitts, Staton). This is a nominal set equipped with
operations (x =b) for b € {0,1} s.t.
L. (u(x = b)) = um(w(x) = b),

2 u(x = b) # x,

3. u# x implies u(x = b) = u,

4 ulx=b)y=c)=uly=c)(x=b)if x£y.
Used in the implementation



Model of Type Theory

Type theory is a generalized algebraic theory (Cartmell).
» Given by: Sorts, Operations, and Equations
» Sorts are interpreted by sets
> Interpretation of each operation
> Check the required equations

We use the notion of categories with families (Dybjer) to give our
model.



Cubical Sets as a Category with Families

Cubical sets form (as any presheaf category) a model of type
theory:

> The category of contexts I' - and substitutions o: A — T is
the category of cubical sets.

» Types [ = A are given by

A« a set, forael(l),l €C,
Aa — Aaf a map, forf: 1 — JinC,
a— af

such that al = a, (af)g = a(fg).

» Terms [ t: A are given by ta € Aa such that
(ta)f = t(af).



Cubical Sets as a Category with Families

» For I A the context extension [.A |- is defined as

(a,a) € (TA)(I) iff « €T(/) and a € Aa,
(o, a)f = (af, af).

We can define the projections p: LA — T and A q: Ap by

p(av a) =a,

q(a, a) = a.

This gives a model of 1 and X but will not get us the identity type
we want!



|dentity Types

LetTFA TFa:A andlTFb: A.

We define ' - Ida(a, b):
For o € T(/) we define (x)w € (Ida(a, b)) for x fresh if

w € Aasy s.t. w(x =0) = aa and w(x = 1) = ba.

Identify <X>(,u = <X/>wl iff w(x = X/) = .



|dentity Types

For f: | — J define

(W) =aer (V) (w(f,x =y)) € Aafs,

where y is fresh for J, and (f,x = y): I, x — J,y extends f.



|dentity Types

This immediately justifies the introduction rule

MN-a:A
I+ refla:Ida(a,a)

by setting (refla)a = (x) aasy for a € ['(/) and x ¢ I.



|dentity Types

For modeling the elimination principle we need: if I - A and there
is a path between ag and a7 in I, then the fibers Aag and Aay
should be equivalent!

In the Kan simplicial set model this is provably not constructive
(T. Coquand/M. Bezem).

To justify the elimination principle for Id we need additional
structure on types!



Example: Polynomial Ring (contd.)

In the polynomial ring cubical set P = k[x,y, z,...]| we can define
aterm a: (Mp q: P) Idp(p,q) by:

apq=(x)t(x)

where t(x) = (1 — x)p + xq.
E.g., if p and g depend at most on y, z, then

(a p(y;2) q(y,2))(y = 0) = a p(0,2) q(0, 2)

This operation is uniform!



Kan Structure

A Kan structure on a cubical set is a uniform choice of fillers of
open boxes.



Open Boxes

Let x ¢ J and a € {0,1}. Define

O (x;J) ={(x,a)}U{(y,c) |y € Jand c € {0,1}}
For I = x, J, K (disjoint) an open box in a cubical set X is given
by a family i of elements u,. € X(I —y) for (y,c) € O?(x; J)

such that
“yC(Z =d) = u(y = c)

Note: K can be non-empty!



Kan Structure
A Kan structure on a cubical set X is given by operations X*1 (and
X|) for each I = x, J, K, such that
Xtae X(1) for if open box of shape ©°(x;J) in X
such that for (y, c) € 0%x; J)
(X10)(y =€) = uye € X(I = y)
and for f: | — K defined on x, J
(XTa)f = X1(if)

where 7 f is the O°(fx; fJ) open box given by
gy = Uye(f —y) € X(K = fy) with (f —y): | —y — K —fy.



Kan Structure

(Similarly we require operations for X.)

We set



Kan Structure on a Type

A Kan structure on a type [ = A is given by operations for all
aefl(l)
Aatid € Aa  for open boxes i

where u,. € Aa(y = ¢), (y,c) € O%x; J) such that
(Aatid)(y = c) = uyc and for f: | — K defined on x, J

(Aatid)f = (Aaf)(d f).

(Similarly we require operations Aal.ir.)



Model of Type Theory

By restricting types [ = A to those with a Kan structure, we get a
model of type theory.

Theorem
Having a Kan structure is closed under -, ¥- and Id-types.



|dentity Type (cont.)

Theorem
IfT.AF P has a Kan structure, then there is a term subst s.t.

FA ThFa:A Trb:A Trp:Ida(ab) TFu:Pla

[+ subst(p, u) : P[b]

Proof.
Let o € I'(/); then pa = (x)w and w connects ac and ba in
dimension x with x ¢ /. So we get an /, x-cube in I".A:

(s,

[Ja —*)  [bla

We define subst(p, u)a = P(asy,w) (ua).



|dentity Type (cont.)

Note that we have a line:

P 'X 5
Plosoutlue) subst(p, v)«a

In particular, if p = refl a, then w = aasx and this gives a term of
I Idpp(u, subst(refla, u)).

One can also show that the singleton type (Xx : A) Ida(a, x) is
contractible.



Universe

Notation: I/ = Hom¢(J, —): C — Set for the representable cset

Definition

As a cubical set the universe U is given by J-cubes being types
I/ + A with Kan structure such that all the Af’s are small sets
(f: J = K).

» U(() are small Kan cubical sets

> A line in U between A and B can be seen as “heterogeneous”
notion of lines, squares, cubes, ...a — b where a € A(/) and
b e B(l).



Kan Structure on U

Theorem
U has a Kan structure.

Proof sketch.

Two steps:
1. U has compositions UT A
2. U has fillers UTA



Compositions in U

Main idea: composition of relations.

Consider a composition with J = y: given A € U(/ — x) and
B, C € U(l — y) such that A(y =0) = B(x = 0) and

A(y =1) = C(x = 0); we want to define

D = U*(A, B, C) € U(I — x).

c
.%.
|
A 'D yT
| X
‘ —
|
. BN
B

The main case is to define Df for f =1: | —x — | — x.



Elements of Dj are triples (a, b, ¢) where a, b, ¢ are elements of
A1, B1, C1 respectively such that they are compatible:
a(y =0) =b(x=0) and a(y = 1) = c(x = 0)

—
/}\ .HC .
|
A 1D aT
|
} '*>b .
—



We have to give a Kan structure on D!

Given an open box i of shape O%(x’; J') in Dy we have to define
D11d. The steps are:

1. Wlo.g. JCX,J;
2. Case x' ¢ J;
3. Case x’ € J (here: X' =y).

All of these cases have a concrete combinatorial solution.



Filling in U

We want to give E = UT(A, B, C) € U(/). The main case is to
give Ef for f =1: | — |. Elements are given by (z)(a, b, c) (z
fresh) with a, b, c are in A,, Bs,, Cs,, respectively such that

N 44

/7

B — e

where the red lines are degenerate. Elements are identified modulo
renaming of z.



For the Kan structure on E one has to consider six cases. To fill &
of shape O?(x’; J') in Ej one has to consider:

1. W.log. JC X, J,;

2. Case X’ = x and a = 0;
3. Case xX’ =xand a=1;
4. Case x ¢ J';

5. Case x' ¢ J;

6. Case x' € J.

This gives an effective proof not relying on minimal fibrations.



Further Work

» Formal correctness proof of the implementation

» Definition of a cubical syntax (Altenkirch/Kaposi, Brunerie,
Polonsky)

» Connection to internal parametricity (Bernardy/Moulin)

» Can we get a model with a variation of cubical sets? (E.g.,
cubical sets with a “diagonal”.)

> Resizing rules



Thank you!



Q>



Standard Cubes

For a finite set J of names denote the standard J-cube by
I/ = Home(J, —): C — Set
Not well-behaved under product
I x 1K 2 179K (for J, K disjoint)

But there is a separated product * with

]IJ * ]IK o~ ]IJUK



Separated Product

For cubical sets X and Y define
(X*Y)(I) =A{(u,v) e X(1) x Y(I) | u # v}
where u # v iff

3J, K C I disjoint 3u’ € X(J),V' € X(K)

u=u's;and v = V'sk
with s;: J— [ and sx: K — .

(* also has a right adjoint —)



