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Univalent Foundations

I Vladimir Voevodsky formulated the Univalence Axiom (UA) in
Martin-Löf Type Theory as a strong form of the Axiom of
Extensionality.

I UA is classically justified by the interpretation of types as Kan
simplicial sets

I However, this justification uses non-constructive steps. Hence
this does not provide a way to compute with univalence.



Result

We give a model of dependent type theory (Π, Σ, U, N, . . . ) in a
constructive metatheory with:

I refl a : IdA(a, a)

I J(a) : C (a, refl a)→ (Π x : A)(Π p : IdA(a, x))C (x , p)

I JEq(a, e) : IdC(a,refl a)(J(a, e, a, refl a), e)

I Univalence Axiom

I Propositional Truncation + Circle + Interval



Implementation: Cubical
(jww C. Cohen, T. Coquand, A. Mörtberg)

I Prototype proof assistant implemented in Haskell

I The Univalence Axiom and functional extensionality are
available and compute!

I Try it! http://github.com/simhu/cubical



Overview

1. Cubical Sets

2. Kan Structure

3. Interpretation of Id

4. Interpretation of U



Cubical Category

We define the cubical category C as follows.
Fix a countable set of symbols (or atoms) x , y , z , . . . distinct from
0, 1.

C is given by:

I objects are finite (decidable) sets of symbols I , J,K , . . .

I a morphism f : I → J is given by a set map

f : I → J ∪ {0, 1}

such that if f (x), f (y) ∈ J, then f (x) = f (y) implies x = y
(f is injective on its defined elements.)
This represents a substitution: assign values 0 or 1 to
variables or rename them.



Cubical Category

I Composition of f : I → J and g : J → K defined by

(g ◦ f )(x) =

{
g(fx) f defined on x ,

fx otherwise;

We write fg for g ◦ f .



Cubical Sets

Definition
A cubical set X is a functor X : C → Set.

So a cubical set X is given by sets X (I ) for each I , and maps
X (I )→ X (J), a 7→ af for f : I → J with

a1 = a and (af )g = a(fg).

Call an element of X (I ) and I -cube.



Example: Polynomial Ring (P. Aczel)

If k is a ring, then k[x , y , z , . . . ] is a cubical set.

I a ∅-cube, or point, is an element of k

I a x-cube, or line, is an element of k[x ]

I a x , y -cube, or square, is an element of k[x , y ]

I . . .

I an I -cube for I = x1, . . . , xn is an element of k[x1, . . . , xn]



Cubical Sets

Think of a symbol x as a name for an indeterminate and

I X (∅) as points,

I X ({x}) as lines in dimension x ,

I X ({x , y}) as squares in the dimensions x , y ,

I X ({x , y , z}) as cubes,

I . . .



Cubical Sets: Faces

For x ∈ I the morphisms (x = 0), (x = 1): I → I − x in C sending
x to 0 and 1 respectively induce the face maps

X (x = 0),X (x = 1): X (I )→ X (I − x)

An I -cube θ of X connects its two faces θ(x = 0) and θ(x = 1):

θ(x = 0) θ(x = 1)θ
x



Cubical Sets: Degeneracies

f : I → J is a degeneracy morphism if f is defined on all elements
in I and I ( J.

If x /∈ I , consider the inclusion sx : I → I , x . We have
sx(x = 0) = 1 = sx(x = 1), and so for an I -cube α of X :

α α
αsx

x

If β = αsx is such a degenerate I , x-cube, we can think of β to be
independent of the indeterminate x .



Cubical Sets

Remark

I Kan’s original approach (1955) to combinatorial homotopy
theory used cubical sets



I Our notion is equivalent to nominal sets with 01-substitions
(Pitts, Staton). This is a nominal set equipped with
operations (x = b) for b ∈ {0, 1} s.t.

1. (u(x = b))π = uπ(π(x) = b),
2. u(x = b) # x ,
3. u # x implies u(x = b) = u,
4. u(x = b)(y = c) = u(y = c)(x = b) if x 6= y .

Used in the implementation



Model of Type Theory

Type theory is a generalized algebraic theory (Cartmell).

I Given by: Sorts, Operations, and Equations

I Sorts are interpreted by sets

I Interpretation of each operation

I Check the required equations

We use the notion of categories with families (Dybjer) to give our
model.



Cubical Sets as a Category with Families

Cubical sets form (as any presheaf category) a model of type
theory:

I The category of contexts Γ ` and substitutions σ : ∆→ Γ is
the category of cubical sets.

I Types Γ ` A are given by

Aα a set, for α ∈ Γ(I ), I ∈ C,
Aα→ Aαf a map, for f : I → J in C,
a 7→ af

such that a1 = a, (af )g = a(fg).

I Terms Γ ` t : A are given by tα ∈ Aα such that
(tα)f = t(αf ).



Cubical Sets as a Category with Families

I For Γ ` A the context extension Γ.A ` is defined as

(α, a) ∈ (Γ.A)(I ) iff α ∈ Γ(I ) and a ∈ Aα,

(α, a)f = (αf , af ).

We can define the projections p: Γ.A→ Γ and Γ.A ` q : A p by

p(α, a) = α,

q(α, a) = a.

This gives a model of Π and Σ but will not get us the identity type
we want!



Identity Types

Let Γ ` A, Γ ` a : A, and Γ ` b : A.

We define Γ ` IdA(a, b):
For α ∈ Γ(I ) we define 〈x〉ω ∈ (IdA(a, b))α for x fresh if

ω ∈ Aαsx s.t. ω(x = 0) = aα and ω(x = 1) = bα.

Identify 〈x〉ω = 〈x ′〉ω′ iff ω(x = x ′) = ω′.



Identity Types

For f : I → J define

(〈x〉ω)f =def 〈y〉(ω(f , x = y)) ∈ Aαf sy

where y is fresh for J, and (f , x = y) : I , x → J, y extends f.



Identity Types

This immediately justifies the introduction rule

Γ ` a : A

Γ ` refl a : IdA(a, a)

by setting (refl a)α = 〈x〉 aαsx for α ∈ Γ(I ) and x /∈ I .



Identity Types

For modeling the elimination principle we need: if Γ ` A and there
is a path between α0 and α1 in Γ, then the fibers Aα0 and Aα1

should be equivalent!

In the Kan simplicial set model this is provably not constructive
(T. Coquand/M. Bezem).

To justify the elimination principle for Id we need additional
structure on types!



Example: Polynomial Ring (contd.)

In the polynomial ring cubical set P = k[x , y , z , . . . ] we can define
a term α : (Πp q : P) IdP(p, q) by:

α p q = 〈x〉t(x)

where t(x) = (1− x)p + xq.
E.g., if p and q depend at most on y , z , then

(α p(y , z) q(y , z))(y = 0) = α p(0, z) q(0, z)

This operation is uniform!



Kan Structure

A Kan structure on a cubical set is a uniform choice of fillers of
open boxes.



Open Boxes

Let x /∈ J and a ∈ {0, 1}. Define

Oa(x ; J) = {(x , a)} ∪ {(y , c) | y ∈ J and c ∈ {0, 1}}

For I = x , J,K (disjoint) an open box in a cubical set X is given
by a family ~u of elements uyc ∈ X (I − y) for (y , c) ∈ Oa(x ; J)
such that

uyc(z = d) = uzd(y = c)

Note: K can be non-empty!



Kan Structure

A Kan structure on a cubical set X is given by operations X↑ (and
X↓) for each I = x , J,K , such that

X↑~u ∈ X (I ) for ~u open box of shape O0(x ; J) in X

such that for (y , c) ∈ O0(x ; J)

(X↑~u)(y = c) = uyc ∈ X (I − y)

and for f : I → K defined on x , J

(X↑~u)f = X↑(~u f )

where ~u f is the O0(fx ; fJ) open box given by
u(fy)c = uyc(f − y) ∈ X (K − fy) with (f − y) : I − y → K − fy .



Kan Structure

(Similarly we require operations for X↓.)

We set

X+~u = (X↑~u)(x = 1)

X−~u = (X↓~u)(x = 0)



Kan Structure on a Type

A Kan structure on a type Γ ` A is given by operations for all
α ∈ Γ(I )

Aα↑~u ∈ Aα for open boxes ~u

where uyc ∈ Aα(y = c), (y , c) ∈ O0(x ; J) such that
(Aα↑~u)(y = c) = uyc and for f : I → K defined on x , J

(Aα↑~u)f = (Aαf )↑(~u f ).

(Similarly we require operations Aα↓~u.)



Model of Type Theory

By restricting types Γ ` A to those with a Kan structure, we get a
model of type theory.

Theorem
Having a Kan structure is closed under Π-, Σ- and Id-types.



Identity Type (cont.)

Theorem
If Γ.A ` P has a Kan structure, then there is a term subst s.t.

Γ ` A Γ ` a : A Γ ` b : A Γ ` p : IdA(a, b) Γ ` u : P[a]

Γ ` subst(p, u) : P[b]

Proof.
Let α ∈ Γ(I ); then pα = 〈x〉ω and ω connects aα and bα in
dimension x with x /∈ I . So we get an I , x-cube in Γ.A:

[a]α [b]α
(αsx ,ω)

We define subst(p, u)α = P(αsx , ω)+(uα).



Identity Type (cont.)

Note that we have a line:

uα subst(p, u)α
P(αsx ,ω)↑(uα)

In particular, if p = refl a, then ω = aαsx and this gives a term of

Γ ` IdP[a](u, subst(refl a, u)).

One can also show that the singleton type (Σx : A) IdA(a, x) is
contractible.



Universe

Notation: IJ = HomC(J,−) : C → Set for the representable cset

Definition
As a cubical set the universe U is given by J-cubes being types
IJ ` A with Kan structure such that all the Af ’s are small sets
(f : J → K ).

I U(∅) are small Kan cubical sets

I A line in U between A and B can be seen as “heterogeneous”
notion of lines, squares, cubes, . . . a→ b where a ∈ A(I ) and
b ∈ B(I ).



Kan Structure on U

Theorem
U has a Kan structure.

Proof sketch.
Two steps:

1. U has compositions U+ ~A

2. U has fillers U↑~A



Compositions in U

Main idea: composition of relations.

Consider a composition with J = y : given A ∈ U(I − x) and
B,C ∈ U(I − y) such that A(y = 0) = B(x = 0) and
A(y = 1) = C (x = 0); we want to define
D = U+(A,B,C ) ∈ U(I − x).

· ·

· ·

C

A

B

D y
x

The main case is to define Df for f = 1 : I − x → I − x .



Elements of D1 are triples (a, b, c) where a, b, c are elements of
A1,B1,C1 respectively such that they are compatible:
a(y = 0) = b(x = 0) and a(y = 1) = c(x = 0)

· ·

· ·

C

A

B

D

· ·

· ·

c

a

b



We have to give a Kan structure on D!
Given an open box ~u of shape O0(x ′; J ′) in D1 we have to define
D1↑~u. The steps are:

1. W.l.o.g. J ⊆ x ′, J ′;

2. Case x ′ /∈ J;

3. Case x ′ ∈ J (here: x ′ = y).

All of these cases have a concrete combinatorial solution.



Filling in U

We want to give E = U↑(A,B,C ) ∈ U(I ). The main case is to
give Ef for f = 1 : I → I . Elements are given by 〈z〉(a, b, c) (z
fresh) with a, b, c are in Asz ,Bsz ,Csz , respectively such that

· ·

· ·

· ·

· ·

z
y

x

where the red lines are degenerate. Elements are identified modulo
renaming of z .



For the Kan structure on E one has to consider six cases. To fill ~u
of shape Oa(x ′; J ′) in E1 one has to consider:

1. W.l.o.g. J ⊆ x ′, J ′;

2. Case x ′ = x and a = 0;

3. Case x ′ = x and a = 1;

4. Case x /∈ J ′;

5. Case x ′ /∈ J;

6. Case x ′ ∈ J.

This gives an effective proof not relying on minimal fibrations.



Further Work

I Formal correctness proof of the implementation

I Definition of a cubical syntax (Altenkirch/Kaposi, Brunerie,
Polonsky)

I Connection to internal parametricity (Bernardy/Moulin)

I Can we get a model with a variation of cubical sets? (E.g.,
cubical sets with a “diagonal”.)

I Resizing rules



Thank you!





Standard Cubes

For a finite set J of names denote the standard J-cube by

IJ = HomC(J,−) : C → Set

Not well-behaved under product

IJ × IK 6∼= IJ∪K (for J,K disjoint)

But there is a separated product ∗ with

IJ ∗ IK ∼= IJ∪K



Separated Product

For cubical sets X and Y define

(X ∗ Y )(I ) = {(u, v) ∈ X (I )× Y (I ) | u # v}

where u # v iff

∃J,K ⊆ I disjoint ∃u′ ∈ X (J), v ′ ∈ X (K )

u = u′sJ and v = v ′sK

with sJ : J ↪→ I and sK : K ↪→ I .

(∗ also has a right adjoint ()


