A Model of Type Theory in Cubical Sets

Simon Huber
(j.w.w. Marc Bezem and Thierry Coquand)
University of Gothenburg

Constructive Mathematics and Models of Type Theory Institut Henri Poincaré
Paris, June 5, 2014

Univalent Foundations

- Vladimir Voevodsky formulated the Univalence Axiom (UA) in Martin-Löf Type Theory as a strong form of the Axiom of Extensionality.
- UA is classically justified by the interpretation of types as Kan simplicial sets
- However, this justification uses non-constructive steps. Hence this does not provide a way to compute with univalence.

Result

We give a model of dependent type theory $(\Pi, \Sigma, U, N, \ldots)$ in a constructive metatheory with:

- refla: $\operatorname{Id}_{A}(a, a)$
- J(a): $C(a$, refl $a) \rightarrow(\Pi x: A)\left(\Pi p: \operatorname{Id}_{A}(a, x)\right) C(x, p)$
- $\operatorname{JEq}(a, e): \operatorname{Id}_{C(a, \text { refl } a)}(J(a, e, a$, refl $a), e)$
- Univalence Axiom
- Propositional Truncation + Circle + Interval

Implementation: Cubical

(jww C. Cohen, T. Coquand, A. Mörtberg)

- Prototype proof assistant implemented in Haskell
- The Univalence Axiom and functional extensionality are available and compute!
- Try it! http://github.com/simhu/cubical

Overview

1. Cubical Sets
2. Kan Structure
3. Interpretation of Id
4. Interpretation of U

Cubical Category

We define the cubical category \mathcal{C} as follows.
Fix a countable set of symbols (or atoms) x, y, z, \ldots distinct from 0,1 .
\mathcal{C} is given by:

- objects are finite (decidable) sets of symbols I, J, K, \ldots
- a morphism $f: I \rightarrow J$ is given by a set map

$$
f: I \rightarrow J \cup\{0,1\}
$$

such that if $f(x), f(y) \in J$, then $f(x)=f(y)$ implies $x=y$ (f is injective on its defined elements.)
This represents a substitution: assign values 0 or 1 to variables or rename them.

Cubical Category

- Composition of $f: I \rightarrow J$ and $g: J \rightarrow K$ defined by

$$
(g \circ f)(x)= \begin{cases}g(f x) & f \text { defined on } x \\ f x & \text { otherwise }\end{cases}
$$

We write $f g$ for $g \circ f$.

Cubical Sets

Definition

A cubical set X is a functor $X: \mathcal{C} \rightarrow$ Set.

So a cubical set X is given by sets $X(I)$ for each I, and maps $X(I) \rightarrow X(J)$, $a \mapsto$ af for $f: I \rightarrow J$ with

$$
a \mathbf{1}=a \quad \text { and } \quad(a f) g=a(f g) .
$$

Call an element of $X(I)$ and I-cube.

Example: Polynomial Ring (P. Aczel)

If k is a ring, then $k[x, y, z, \ldots]$ is a cubical set.

- a \emptyset-cube, or point, is an element of k
- a x-cube, or line, is an element of $k[x]$
- a x, y-cube, or square, is an element of $k[x, y]$
- an I-cube for $I=x_{1}, \ldots, x_{n}$ is an element of $k\left[x_{1}, \ldots, x_{n}\right]$

Cubical Sets

Think of a symbol x as a name for an indeterminate and

- $X(\emptyset)$ as points,
- $X(\{x\})$ as lines in dimension x,
- $X(\{x, y\})$ as squares in the dimensions x, y,
- $X(\{x, y, z\})$ as cubes,

Cubical Sets: Faces

For $x \in I$ the morphisms $(x=0),(x=1): I \rightarrow I-x$ in \mathcal{C} sending x to 0 and 1 respectively induce the face maps

$$
X(x=0), X(x=1): X(I) \rightarrow X(I-x)
$$

An I-cube θ of X connects its two faces $\theta(x=0)$ and $\theta(x=1)$:

$$
\theta(x=0) \xrightarrow[x]{\theta} \theta(x=1)
$$

Cubical Sets: Degeneracies

$f: I \rightarrow J$ is a degeneracy morphism if f is defined on all elements in I and $I \subsetneq J$.

If $x \notin I$, consider the inclusion $s_{x}: I \rightarrow I, x$. We have $s_{x}(x=0)=\mathbf{1}=s_{x}(x=1)$, and so for an I-cube α of X :

If $\beta=\alpha s_{x}$ is such a degenerate I, x-cube, we can think of β to be independent of the indeterminate x.

Cubical Sets

Remark

- Kan's original approach (1955) to combinatorial homotopy theory used cubical sets
- Our notion is equivalent to nominal sets with 01-substitions (Pitts, Staton). This is a nominal set equipped with operations $(x=b)$ for $b \in\{0,1\}$ s.t.

1. $(u(x=b)) \pi=u \pi(\pi(x)=b)$,
2. $u(x=b) \# x$,
3. $u \# x$ implies $u(x=b)=u$,
4. $u(x=b)(y=c)=u(y=c)(x=b)$ if $x \neq y$.

Used in the implementation

Model of Type Theory

Type theory is a generalized algebraic theory (Cartmell).

- Given by: Sorts, Operations, and Equations
- Sorts are interpreted by sets
- Interpretation of each operation
- Check the required equations

We use the notion of categories with families (Dybjer) to give our model.

Cubical Sets as a Category with Families

Cubical sets form (as any presheaf category) a model of type theory:

- The category of contexts $\Gamma \vdash$ and substitutions $\sigma: \Delta \rightarrow \Gamma$ is the category of cubical sets.
- Types $\Gamma \vdash A$ are given by

$$
\begin{array}{ll}
A \alpha \text { a set, } & \text { for } \alpha \in \Gamma(I), I \in \mathcal{C}, \\
A \alpha \rightarrow A \alpha f \text { a map, } & \text { for } f: I \rightarrow J \text { in } \mathcal{C}, \\
a \mapsto a f &
\end{array}
$$

such that $a \mathbf{1}=a$, $(a f) g=a(f g)$.

- Terms $\Gamma \vdash t: A$ are given by $t \alpha \in A \alpha$ such that $(t \alpha) f=t(\alpha f)$.

Cubical Sets as a Category with Families

- For $\Gamma \vdash A$ the context extension $\Gamma . A \vdash$ is defined as

$$
\begin{gathered}
(\alpha, a) \in(\Gamma . A)(I) \text { iff } \alpha \in \Gamma(I) \text { and } a \in A \alpha, \\
(\alpha, a) f=(\alpha f, a f) .
\end{gathered}
$$

We can define the projections $\mathrm{p}: \Gamma . A \rightarrow \Gamma$ and $\Gamma . A \vdash \mathrm{q}: A \mathrm{p}$ by

$$
\begin{aligned}
& \mathrm{p}(\alpha, a)=\alpha, \\
& \mathrm{q}(\alpha, a)=a .
\end{aligned}
$$

This gives a model of Π and Σ but will not get us the identity type we want!

Identity Types

Let $\Gamma \vdash A, \Gamma \vdash a: A$, and $\Gamma \vdash b: A$.
We define $\Gamma \vdash \operatorname{Id}_{A}(a, b)$:
For $\alpha \in \Gamma(I)$ we define $\langle x\rangle \omega \in\left(\operatorname{Id}_{A}(a, b)\right) \alpha$ for x fresh if

$$
\omega \in A \alpha s_{x} \text { s.t. } \omega(x=0)=a \alpha \text { and } \omega(x=1)=b \alpha
$$

Identify $\langle x\rangle \omega=\left\langle x^{\prime}\right\rangle \omega^{\prime}$ iff $\omega\left(x=x^{\prime}\right)=\omega^{\prime}$.

Identity Types

For $f: I \rightarrow J$ define

$$
(\langle x\rangle \omega) f==_{\operatorname{def}}\langle y\rangle(\omega(f, x=y)) \quad \in A \alpha f s_{y}
$$

where y is fresh for J, and $(f, x=y): I, x \rightarrow J, y$ extends f.

Identity Types

This immediately justifies the introduction rule

$$
\frac{\Gamma \vdash a: A}{\Gamma \vdash \operatorname{refl} a: \operatorname{Id}_{A}(a, a)}
$$

by setting (refl a) $\alpha=\langle x\rangle$ a αs_{x} for $\alpha \in \Gamma(I)$ and $x \notin I$.

Identity Types

For modeling the elimination principle we need: if $\Gamma \vdash A$ and there is a path between α_{0} and α_{1} in Γ, then the fibers $A \alpha_{0}$ and $A \alpha_{1}$ should be equivalent!

In the Kan simplicial set model this is provably not constructive (T. Coquand/M. Bezem).

To justify the elimination principle for Id we need additional structure on types!

Example: Polynomial Ring (contd.)

In the polynomial ring cubical set $P=k[x, y, z, \ldots]$ we can define a term $\alpha:(\Pi p q: P) \operatorname{Id} p(p, q)$ by:

$$
\alpha p q=\langle x\rangle t(x)
$$

where $t(x)=(1-x) p+x q$.
E.g., if p and q depend at most on y, z, then

$$
(\alpha p(y, z) q(y, z))(y=0)=\alpha p(0, z) q(0, z)
$$

This operation is uniform!

Kan Structure

A Kan structure on a cubical set is a uniform choice of fillers of open boxes.

Open Boxes

Let $x \notin J$ and $a \in\{0,1\}$. Define

$$
\mathcal{O}^{a}(x ; J)=\{(x, a)\} \cup\{(y, c) \mid y \in J \text { and } c \in\{0,1\}\}
$$

For $I=x, J, K$ (disjoint) an open box in a cubical set X is given by a family \vec{u} of elements $u_{y c} \in X(I-y)$ for $(y, c) \in \mathcal{O}^{a}(x ; J)$ such that

$$
u_{y c}(z=d)=u_{z d}(y=c)
$$

Note: K can be non-empty!

Kan Structure

A Kan structure on a cubical set X is given by operations $X \uparrow$ (and $X \downarrow$) for each $I=x, J, K$, such that

$$
X \uparrow \vec{u} \in X(I) \quad \text { for } \vec{u} \text { open box of shape } \mathcal{O}^{0}(x ; J) \text { in } X
$$

such that for $(y, c) \in \mathcal{O}^{0}(x ; J)$

$$
(X \uparrow \vec{u})(y=c)=u_{y c} \in X(I-y)
$$

and for $f: I \rightarrow K$ defined on x, J

$$
(X \uparrow \vec{u}) f=X \uparrow(\vec{u} f)
$$

where $\vec{u} f$ is the $\mathcal{O}^{0}(f x ; f J)$ open box given by $u_{(f y) c}=u_{y c}(f-y) \in X(K-f y)$ with $(f-y): I-y \rightarrow K-f y$.

Kan Structure

(Similarly we require operations for $X \downarrow$.)
We set

$$
\begin{aligned}
& X^{+} \vec{u}=(X \uparrow \vec{u})(x=1) \\
& X^{-} \vec{u}=(X \downarrow \vec{u})(x=0)
\end{aligned}
$$

Kan Structure on a Type

A Kan structure on a type $\Gamma \vdash A$ is given by operations for all $\alpha \in \Gamma(I)$

$$
A \alpha \uparrow \vec{u} \in A \alpha \quad \text { for open boxes } \vec{u}
$$

where $u_{y c} \in A \alpha(y=c),(y, c) \in \mathcal{O}^{0}(x ; J)$ such that $(A \alpha \uparrow \vec{u})(y=c)=u_{y c}$ and for $f: I \rightarrow K$ defined on x, J

$$
(A \alpha \uparrow \vec{u}) f=(A \alpha f) \uparrow(\vec{u} f) .
$$

(Similarly we require operations $A \alpha \downarrow \vec{u}$.)

Model of Type Theory

By restricting types $\Gamma \vdash A$ to those with a Kan structure, we get a model of type theory.

Theorem
Having a Kan structure is closed under П-, Σ - and Id-types.

Identity Type (cont.)

Theorem
If $\Gamma . A \vdash P$ has a Kan structure, then there is a term subst s.t.
$\begin{array}{llll}\Gamma \vdash A \quad \Gamma \vdash a: A & \Gamma \vdash b: A \quad \Gamma \vdash p: \operatorname{Id}_{A}(a, b) & \Gamma \vdash u: P[a] \\ & \Gamma \vdash \operatorname{subst}(p, u): P[b]\end{array}$

Proof.

Let $\alpha \in \Gamma(I)$; then $p \alpha=\langle x\rangle \omega$ and ω connects $a \alpha$ and $b \alpha$ in dimension x with $x \notin I$. So we get an I, x-cube in Г. A :

$$
[a] \alpha \xrightarrow{\left(\alpha s_{x}, \omega\right)}[b] \alpha
$$

We define $\operatorname{subst}(p, u) \alpha=P\left(\alpha s_{x}, \omega\right)^{+}(u \alpha)$.

Identity Type (cont.)

Note that we have a line:

$$
u \alpha \xrightarrow{P\left(\alpha s_{x}, \omega\right) \uparrow(u \alpha)} \operatorname{subst}(p, u) \alpha
$$

In particular, if $p=\operatorname{refl} a$, then $\omega=a \alpha s_{x}$ and this gives a term of

$$
\Gamma \vdash \operatorname{Id}_{P[a]}(u, \text { subst }(\operatorname{refl} a, u)) .
$$

One can also show that the singleton type $(\Sigma x: A) \operatorname{Id}_{A}(a, x)$ is contractible.

Universe

Notation: $\mathbb{I}^{J}=\operatorname{Hom}_{\mathcal{C}}(J,-): \mathcal{C} \rightarrow$ Set for the representable cset

Definition

As a cubical set the universe U is given by J-cubes being types $\mathbb{I}^{J} \vdash A$ with Kan structure such that all the A_{f} 's are small sets $(f: J \rightarrow K)$.

- $\mathrm{U}(\emptyset)$ are small Kan cubical sets
- A line in U between A and B can be seen as "heterogeneous" notion of lines, squares, cubes, $\ldots a \rightarrow b$ where $a \in A(I)$ and $b \in B(I)$.

Kan Structure on U

Theorem
U has a Kan structure.
Proof sketch.
Two steps:

1. U has compositions $U^{+} \vec{A}$
2. U has fillers $U \uparrow \vec{A}$

Compositions in U

Main idea: composition of relations.
Consider a composition with $J=y$: given $A \in U(I-x)$ and $B, C \in \mathrm{U}(I-y)$ such that $A(y=0)=B(x=0)$ and $A(y=1)=C(x=0)$; we want to define $D=\mathrm{U}^{+}(A, B, C) \in \mathrm{U}(I-x)$.

The main case is to define D_{f} for $f=\mathbf{1}: I-x \rightarrow I-x$.

Elements of D_{1} are triples (a, b, c) where a, b, c are elements of A_{1}, B_{1}, C_{1} respectively such that they are compatible: $a(y=0)=b(x=0)$ and $a(y=1)=c(x=0)$

We have to give a Kan structure on D !
Given an open box \vec{u} of shape $\mathcal{O}^{0}\left(x^{\prime} ; J^{\prime}\right)$ in D_{1} we have to define $D_{1} \uparrow \vec{u}$. The steps are:

1. W.I.o.g. $J \subseteq x^{\prime}, J^{\prime}$;
2. Case $x^{\prime} \notin J$;
3. Case $x^{\prime} \in J$ (here: $x^{\prime}=y$).

All of these cases have a concrete combinatorial solution.

Filling in U

We want to give $E=\mathrm{U} \uparrow(A, B, C) \in \mathrm{U}(I)$. The main case is to give E_{f} for $f=\mathbf{1}: I \rightarrow I$. Elements are given by $\langle z\rangle(a, b, c)(z$ fresh) with a, b, c are in $A_{s_{z}}, B_{s_{z}}, C_{s_{z}}$, respectively such that

where the red lines are degenerate. Elements are identified modulo renaming of z.

For the Kan structure on E one has to consider six cases. To fill \vec{u} of shape $\mathcal{O}^{a}\left(x^{\prime} ; J^{\prime}\right)$ in E_{1} one has to consider:

1. W.I.o.g. $J \subseteq x^{\prime}, J^{\prime} ;$
2. Case $x^{\prime}=x$ and $a=0$;
3. Case $x^{\prime}=x$ and $a=1$;
4. Case $x \notin J^{\prime}$;
5. Case $x^{\prime} \notin J$;
6. Case $x^{\prime} \in J$.

This gives an effective proof not relying on minimal fibrations.

Further Work

- Formal correctness proof of the implementation
- Definition of a cubical syntax (Altenkirch/Kaposi, Brunerie, Polonsky)
- Connection to internal parametricity (Bernardy/Moulin)
- Can we get a model with a variation of cubical sets? (E.g., cubical sets with a "diagonal".)
- Resizing rules

Thank you!

Standard Cubes

For a finite set J of names denote the standard J-cube by

$$
\mathbb{I}^{J}=\operatorname{Hom}_{\mathcal{C}}(J,-): \mathcal{C} \rightarrow \text { Set }
$$

Not well-behaved under product

$$
\mathbb{I}^{J} \times \mathbb{I}^{K} \not \not \mathbb{I}^{J \cup K} \quad(\text { for } J, K \text { disjoint })
$$

But there is a separated product $*$ with

$$
\mathbb{I}^{J} * \mathbb{I}^{K} \cong \mathbb{I}^{J \cup K}
$$

Separated Product

For cubical sets X and Y define

$$
(X * Y)(I)=\{(u, v) \in X(I) \times Y(I) \mid u \# v\}
$$

where $u \# v$ iff

$$
\begin{gathered}
\exists J, K \subseteq I \text { disjoint } \exists u^{\prime} \in X(J), v^{\prime} \in X(K) \\
u=u^{\prime} \text { s } J \text { and } v=v^{\prime} s_{K}
\end{gathered}
$$

with $s_{J}: J \hookrightarrow I$ and $s_{K}: K \hookrightarrow I$.
(* also has a right adjoint \multimap)

