A Cubical Type Theory

Simon Huber
(j.w.w. Cyril Cohen, Thierry Coquand, Anders Mörtberg)
University of Gothenburg

$$
\begin{gathered}
\text { HoTT and UF - Mini-Symposium at DMV } 2015 \\
\text { Hamburg, September 25, } 2015
\end{gathered}
$$

Cubical Type Theory: Overview

- Type theory where we can directly argue about n-dimensional cubes (points, lines, squares, cubes,).
- Based on a constructive model of type theory in cubical sets with connections and diagonals.
- П, Σ, data types, U
- path types and identity types
- The Univalence Axiom and function extensionality are provable.
- Some higher inductive types with "good" definitional equalities

Basic Idea

Expressions may depend on names i, j, k, \ldots ranging over an interval II. E.g.,

$$
x: A, i: \mathbb{I}, y: B(i, x) \vdash u(x, i): C(x, i, y)
$$

is a line connecting the two points

$$
\begin{aligned}
& x: A, y: B(0, x) \vdash u(x, 0): C(x, 0, y) \\
& x: A, y: B(1, x) \vdash u(x, 1): C(x, 1, y)
\end{aligned}
$$

Each line $i: \mathbb{I} \vdash t(i): A$ gives an equality

$$
\vdash\langle i\rangle t(i): \text { Path } A t(0) t(1)
$$

The Interval \mathbb{I}

- Given by $r, s::=0|1| i|1-i| r \wedge s \mid r \vee s$
- i ranges over names or symbols
- Intuition: i an element of $[0,1], \wedge$ is min, and \vee is max.
- Equality is the equality in the free bounded distributive lattice with generators $i, 1-i$.
- De Morgan algebra via

$$
\begin{array}{ll}
1-0=1 & 1-(r \wedge s)=(1-r) \vee(1-s) \\
1-1=0 & 1-(r \vee s)=(1-r) \wedge(1-s) \\
& 1-(1-i)=i
\end{array}
$$

NB: $i \wedge(1-i) \neq 0$ and $i \vee(1-i) \neq 1$!

Overview of the Syntax

$A, B, a, b, u, v::=x$
$|(x: A) \rightarrow B| \lambda x: A . u \mid u v$
$|(x: A) \times B|(u, v)|u .1| v .2$
| U
| Path $A a b$
$\mid\langle i\rangle u$
| ur
| comp $^{i} A u \vec{u}$
| Glue $A \vec{u} \mid(a, \vec{u})$
| ...
variables
П-types
Σ-types
universe
path types
name abstraction
interval application
composition
glueing
data types...

Contexts and Substitutions

Contexts

$$
\overline{() \vdash} \quad \frac{\Gamma \vdash A}{\Gamma, x: A \vdash} \quad \frac{\Gamma \vdash}{\Gamma, i: \mathbb{I} \vdash}
$$

Substitutions are as usual but we also allow to assign an element in the interval to a name:

$$
\frac{\sigma: \Delta \rightarrow \Gamma \quad \Delta \vdash r: \mathbb{I}}{(\sigma, i=r): \Delta \rightarrow \Gamma, i: \mathbb{I}}
$$

Face Operations

Certain substitutions correspond to face operations. E.g.:

$$
(x=x, i=0, y=y):(x: A, y: B(i=0)) \rightarrow(x: A, i: \mathbb{I}, y: B)
$$

In general a face operation are $\alpha: \Gamma \alpha \rightarrow \Gamma$ setting some names to 0 or 1 and otherwise the identity.

Faces are determined by all the assignments $i=b, b \in\{0,1\}$; write

$$
\alpha=\left(i_{1}=b_{1}\right) \ldots\left(i_{n}=b_{n}\right)
$$

(Special case: $\alpha=\mathrm{id}$)

Basic Typing Rules

$$
\begin{gathered}
\frac{\Gamma \vdash}{\Gamma \vdash x: A}(x: A \text { in } \Gamma) \\
\frac{\Gamma, x: A \vdash B}{\Gamma \vdash(x: A) \rightarrow B} \quad \frac{\Gamma \vdash i: \mathbb{I}}{\Gamma}(i: \mathbb{I} \text { in } \Gamma) \\
\frac{\Gamma \vdash w:(x: A) \rightarrow B}{\Gamma \vdash w u: B(x=u)}
\end{gathered}
$$

Also: Sigma types and data types...

Path Types

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash a: A \quad \Gamma \vdash b: A}{\Gamma \vdash \operatorname{Path} A a b}
$$

$$
\frac{\Gamma \vdash A \quad \Gamma, i: \mathbb{I} \vdash u: A}{\Gamma \vdash\langle i\rangle u: \text { Path } A u(i=0) u(i=1)}
$$

$\Gamma \vdash w:$ Path $A a b$

$$
\begin{aligned}
& \Gamma \vdash w 0=a: A \\
& \Gamma \vdash w 1=b: A
\end{aligned}
$$

Path Type

- Reflexivity a : Aトrefl a: Path A a a is given by the constant path

$$
\text { refl } a=\langle i\rangle a
$$

- Singletons are contractible: for $a: A$ and $S_{a}=(x: A) \times($ Path $A a x)$ we have

$$
\langle i\rangle(p i,\langle j\rangle p(i \wedge j)): \text { Path } S_{a}(a, \text { refl } a)(x, p)
$$

for $(x, p): S_{a}$.

Function Extensionality

For f and g of type $C=(x: A) \rightarrow B$ and $w:(x: A) \rightarrow$ Path $B(f x)(g x)$ we have

$$
\langle i\rangle \lambda x: A . w x i \text { : Path } C f g
$$

Kan Operations

Given $i: \mathbb{I} \vdash A$ we want an equivalence between $A(i 0)$ and $A(i 1)$.
Require additional composition operations.
Refinement of Kan's extension condition (1955)
"Any open box can be filled"

Systems

A system

$$
\vec{u}=\left[\alpha \mapsto u_{\alpha}\right]
$$

for $\Gamma \vdash A$ is given by a family of compatible terms

$$
\Gamma \alpha \vdash u_{\alpha}: A \alpha
$$

(α ranging over a set of faces L, L downwards closed)

A system

$$
\left\lceil\alpha \vdash u_{\alpha}: A \alpha \quad(\alpha \in L)\right.
$$

can be considered as partial element of $\Gamma \vdash A$ with extent L. We call \vec{u} connected if there is a $\Gamma \vdash u: A$ such that:

$$
\Gamma \alpha \vdash u \alpha=u_{\alpha}: A \alpha
$$

For example, if L is generated by the faces

$$
(i=0),(i=1),(j=0),(j=1)
$$

then a system corresponds to a boundary of a square. It is connected if the boundary of the square can be filled.

Compositions

$$
\begin{array}{cl}
\Gamma, i: \mathbb{I} \vdash A \quad & \Gamma \vdash u: A(i=0) \quad \Gamma \alpha, i: \mathbb{I} \vdash u_{\alpha}: A \alpha \quad(\alpha \in L) \\
& \Gamma \alpha \vdash u \alpha=u_{\alpha}(i=0): A \alpha(i=0) \\
& \Gamma \vdash \operatorname{comp}^{i} A u \vec{u}: A(i=1)
\end{array}
$$

$$
\left(\operatorname{comp}^{i} A u \vec{u}\right) \alpha=u_{\alpha}(i=1) \quad \text { if } \alpha \in L
$$

$$
\left(\operatorname{comp}^{i} A u \vec{u}\right) \sigma=\operatorname{comp}^{j} A(\sigma, i=j) u \sigma \vec{u}(\sigma, i=j)
$$

Filling

There is also an operation

$$
\Gamma, i: \mathbb{I} \vdash \text { fill }^{i} A u \vec{u}: A
$$

connecting u to comp ${ }^{i} A u \vec{u}$. This can be defined using compositions:

$$
\text { fill }^{i} A(i) u \vec{u}(i)=\operatorname{comp}^{j} A(i \wedge j) u\left[\alpha \mapsto u_{\alpha}(i \wedge j),(i=0) \mapsto u\right]
$$

Special case: path lifting property ($\vec{u}=[]$)

Composition

comp ${ }^{i} A u \vec{u}$ is defined by induction on the type A :

- Case $i: \mathbb{I} \vdash A=$ Path $B b_{0} b_{1}$.

$$
\operatorname{comp}^{i} A u \vec{u}=
$$

$$
\langle j\rangle \operatorname{comp}^{i} B(u j)\left[\alpha \mapsto u_{\alpha} j,(j=0) \mapsto b_{0},(j=1) \mapsto b_{1}\right]
$$

- Case $i: \mathbb{I} \vdash A=(x: B) \rightarrow C$. For $b_{1}: B(i 1)$

$$
\operatorname{comp}^{i} \text { Af } \vec{g} b_{1}=\operatorname{comp}^{j} C(i=j, x=b)\left(f b_{0}\right)(\vec{g}(i=j) b)
$$

with $b=$ fill $^{-j} B(i=j) b_{1}[]$ and $b_{0}=b(j=0): B(i=0)$.

Judgmental equalities are given by unfolding the definitions.

Glue

To justify composition for U and univalence we add g/ueing.
Given a system of equivalences on a type we introduce a new type:

$$
\begin{gathered}
\frac{\Gamma \vdash A \quad \Gamma \alpha \vdash f_{\alpha}: \text { Equiv } T_{\alpha} A \alpha \quad(\alpha \in L)}{\Gamma \vdash \text { Glue } A \vec{f}} \\
\frac{\Gamma \vdash a: A \quad \Gamma \alpha \vdash t_{\alpha}: T_{\alpha} \quad \Gamma \alpha \vdash f_{\alpha} t_{\alpha}=a \alpha: A \alpha}{\Gamma \vdash(a, \vec{t}): \text { Glue } A \vec{f}}
\end{gathered}
$$

(Glue $A \vec{f}$) $\alpha=T_{\alpha}$
$(a, \vec{t}) \alpha=t_{\alpha} \quad$ if $\alpha \in L$
(Glue $A \vec{f}) \sigma=$ Glue $A \sigma \vec{f} \sigma$
$(a, \vec{t}) \sigma=(a \sigma, \vec{t} \sigma)$

Compositions for the Universe

We also can define composition for Glue $A \vec{f}$.

For the universe U , we can reduce composition in U to Glue.
Any path P : Path $\cup A B$ induces an equivalence P^{+}: Equiv $A B$ whose function part is given by:

$$
a: A \vdash \operatorname{comp}^{i}(P i) a[]: B
$$

Univalence from Glue

Using Glue we can also prove the Univalence Axiom! Main ingredients:

- Given an equivalence f : Equiv $A B$ we can construct a path E_{f} : Path U AB by

$$
E_{f}=\langle i\rangle \text { Glue } B\left[(i=0) \mapsto f,(i=1) \mapsto(\langle k\rangle B)^{+}\right]
$$

- Starting from P : Path $\cup A B$ we can also construct a square

$$
\text { Path }(\text { Path } \cup A B) E_{P+} P
$$

using Glue:
$\langle j i\rangle$ Glue $B\left[(i=0) \mapsto P^{+}\right.$,

$$
\begin{aligned}
& (i=1) \mapsto(\langle k\rangle B)^{+} \\
& \left.(j=1) \mapsto(\langle k\rangle P(i \vee k))^{+}\right]
\end{aligned}
$$

Identity Types

For the path type Path $A u v$ we can define the J-eliminator. But: the usual definitional equality only holds propositional.

Recently, Andrew Swan found a way to recover an identity type Id $A u v$ (based on a cofibration/trivial fibration factorization). This identity type interprets the definitional equality for J!

Identity Types

$$
\begin{aligned}
& \Gamma \vdash w: \text { Path } A u v \\
& \frac{\Gamma \alpha \vdash w \alpha=\langle i\rangle u \alpha: \text { Path A } \alpha u \alpha v \alpha \quad(\alpha \in L)}{\Gamma \vdash(w, L): \operatorname{Id} A u v}
\end{aligned}
$$

The system L remembers where w is constant.
For u : A define refl u as $(\langle i\rangle u, \mathbf{1})$, where $\mathbf{1}$ is the maximal system generated by the identity.

One can define J with the usual definitional equality!

We expect univalence also to hold for Id.

Implementation: Cubicaltt

Prototype proof-assistant implemented in Haskell.

Based on: "A simple type-theoretic language: Mini-TT", T. Coquand, Y. Kinoshita, B. Nordström, M. Takeya (2008).

Mini-TT is a variant of Martin-Löf type theory with data types. Cubicaltt extends Mini-TT with:

- name abstraction and application
- identity types
- composition
- equivalences can be transformed into equalities (glueing)
- some higher inductive types (experimental)

Try it: https://github.com/mortberg/cubicaltt

Further Work

- Formal correctness proof of model and implementation
- Proof of normalization and decidability of type-checking
- Related work: Brunerie/Licata, Polonsky, Altenkirch/Kaposi, Bernardy/Coquand/Moulin

Semantics

Consider the category $\mathcal{C}_{\mathrm{dM}}$ with objects finite sets of names I, J, K, \ldots and a morphism $I \rightarrow J$ is a map $J \rightarrow \mathrm{dM}(I)$ where $\mathrm{dM}(I)$ is the free De Morgan algebra on the generators I.

A context $\Gamma \vdash$ is a presheaf on \mathcal{C}, i.e.,

- given by sets $\Gamma(I)$ for each I,
- and maps $\Gamma(J) \rightarrow \Gamma(I), \rho \mapsto \rho f$ for each $f: I \rightarrow J$ s.t.

$$
(\rho f) g=\rho(f g) \quad \text { and } \quad \rho \mathrm{id}=\rho
$$

The interval \mathbb{I} is interpreted as the presheaf $\mathbb{I}(J)=\mathrm{dM}(J)$.

Semantics

A type $\Gamma \vdash A$ is given by a presheaf on the category of elements of
Г, i.e.,

- given by a family of sets $A \rho$ for each $\rho \in \Gamma(I)$,
- and maps $A \rho \rightarrow A(\rho f), a \mapsto a f$ s.t.

$$
(a f) g=a(f g) \quad \text { and } \quad a \mathrm{id}=a
$$

Moreover, we require a composition structure: for each $\rho \in \Gamma(I, i)$, family of compatible elements $u_{\alpha} \in A \rho \alpha(\alpha \in L$, i not in $\alpha)$, and $u \in A \rho(i=0)$ s.t. $u \alpha=u_{\alpha}(i=0)$, there is

$$
\operatorname{comp}^{i}(A \rho) u \vec{u} \quad \in A \rho(i=1)
$$

such that

$$
\begin{aligned}
& \left(\operatorname{comp}^{i}(A \rho) u \vec{u}\right) f=\operatorname{comp}^{j}(A \rho(f, i=j)) \text { uf } \vec{u} f \quad \text { for } f: I \rightarrow J \\
& \left(\operatorname{comp}^{i}(A \rho) u \vec{u}\right) \alpha=u_{\alpha}(i=1)
\end{aligned}
$$

Examples of HITs: Propositional Truncation

$$
\begin{aligned}
& \frac{\Gamma \vdash A}{\Gamma \vdash \operatorname{inh} A} \\
& \frac{\Gamma \vdash a: A}{\Gamma \vdash \operatorname{inc} a: \operatorname{inh} A} \\
& \Gamma \vdash u: \operatorname{inh} A \quad \Gamma \vdash v: \operatorname{inh} A \quad \Gamma \vdash r: \mathbb{I} \quad \text { squash } u v 0=u \\
& \Gamma \vdash \text { squash } u v r: \operatorname{inh} A \\
& \text { squash } u v 1=v \\
& \frac{\Gamma \vdash u: \operatorname{inh} A \quad \Gamma \alpha, i: \mathbb{I} \vdash u_{\alpha} \quad \Gamma \alpha \vdash u_{\alpha}(i=0)=u \alpha: \operatorname{inh} A \alpha}{\Gamma \vdash \operatorname{hcomp}^{i} u \vec{u}: \operatorname{inh} A} \\
& \Gamma \alpha \vdash\left(\text { hcomp }^{i} \text { u } \vec{u}\right) \alpha=u_{\alpha}(i=1): \operatorname{inh} A \alpha
\end{aligned}
$$

One can define compositions for $\operatorname{inh} A$ (uses compositions in A).

