
Cubical Interpretations of Type Theory

Simon Huber

University of Gothenburg

PhD Defense
Gothenburg, November 29, 2016



Intensional Type Theory

Martin-Löf type theory with intensional identity types lacks
principles of extensionality such as:
I function extensionality

(Π(x : A) f x =B g x)→ f =Π(x :A)B g

I isomorphic types are equal; gives

A ∼= B → P(A)→ P(B)

Both principles make type theory more modular for both
programming and proofs!



Univalent Foundations

Voevodsky formulated the Univalence Axiom in 2009
I refinement of the principle that isomorphic types are equal
I UA implies function extensionality
I A new, surprising connection of type theory with

homotopy theory! “Proofs of equalities are paths!”
I classical model using Kan simplicial sets; does not

explain UA computationally



This Thesis

I. A model of dependent type theory in cubical sets,
formulated in a constructive metatheory

II. Cubical Type Theory inspired by a refinement of this
model where the Univalence Axiom is provable



Part I.



Cubical Sets: Intuition

I introduced by Kan (1955)
I A cubical set X is specified by points, lines, squares,

cubes, . . .
I Intuition: n-cubes should represent maps

u : In → X , where I = [0, 1]

I Here: take {i1, . . . , in} instead of n

u(i1, . . . , in) ∈ X (i1 ∈ I, . . . , in ∈ I)

“values depending on names i1, . . . , in”



Cubical Sets: Intuition

u
points

u(i)

lines

u(i , j)

squares

u(i , j , k)

cubes . . .

Basic operations are substitutions on names:

I taking a face:

(u(i , j))(j/0) = u(i , 0)
(u(i , j))(j/1) = u(i , 1)

I considering u(i , j) as degenerate cube v(i , j , k) = u(i , j)
constant in direction k

I renaming a name (u(i , j))(j/k) = u(i , k) (k fresh)



Cubical Sets

Fix countably infinite set of names/atoms/directions i , j , k , . . .
distinct from 0, 1.

A cubical set is a presheaf X : Cop → Set where C is the
category of cubes given by:
I objects are finite sets of names I = {i1, . . . , in}, n > 0
I morphisms f : J → I given by maps I → J ∪ {0, 1}

injective on the preimage of J

X given by:
I sets X (I) (called I-cubes), I = {i1, . . . , in}
I maps X (I)→ X (J), u 7→ uf for f : J → I

with u1 = u and (uf )g = u(fg)



Presheaf Models of Type Theory
Cubical sets form a model of type theory (as does any presheaf
category):
I contexts Γ ` are cubical sets
I types Γ ` A: sets of “heterogeneous” cubes Aρ over
ρ ∈ Γ(I)

•
u(0) u(i)

•
u(1)

A(ρ(0)) A(ρ(1))

A(ρ(i))

A

Γρ(0)
ρ(i)

ρ(1)

But equality not interesting. . .



Presheaf Models of Type Theory
Cubical sets form a model of type theory (as does any presheaf
category):
I contexts Γ ` are cubical sets
I types Γ ` A: sets of “heterogeneous” cubes Aρ over
ρ ∈ Γ(I)

•
u(0) u(i)

•
u(1)

A(ρ(0)) A(ρ(1))

A(ρ(i))

A

Γρ(0)
ρ(i)

ρ(1)

But equality not interesting. . .



. . .We Want: Proofs of Equalities are Paths!

A cubical set A has a path type:

x : A, y : A ` PathA x y

For u, v ∈ A(I) the elements of PathA u v are of the form

〈i〉w

where
I w ∈ A(I , i) and i fresh
I w(i/0) = u and w(i/1) = v
I i is bound, so 〈i〉w = 〈j〉w ′ iff w(i/j) = w ′



Equality as Path?

The path type is reflexive x : A ` refl x : PathA x x interpreted
by the constant path refl u = 〈i〉u.

To justify the usual elimination principle for identity types we
need in particular Leibniz’s indiscernibility of identicals: given
p : PathA u v and a type x : A ` B(x) we want a map:

transp p : B(u)→ B(v)

We need to require additional structure on types!!



Kan’s Extension Property

Kan (1955) formulated an extension property on a cubical set:
“any open box can be filled”

•



Kan Structure

I refines Kan’s extension property
I structure, not a property
I uniform choice of fillers of open boxes
I allow more general open boxes



Results

Theorem (Bezem/Coquand/SH 2013)
There is a model of type theory based on cubical sets with
Kan structure supporting Π, Σ, data types like N (naturals),
and identity types (interpreted as path types).

Remark
I The usual definitional equalities for the identity type hold

only as propositional equalities. This can be fixed (Swan).
I Function extensionality is valid in the model.
I The model is formulated in constructive metatheory and

we can read of operational semantics. Type checker
implemented in Haskell.1

1github.com/simhu/cubical
(jww Cohen, Coquand, Mörtberg 2013)

https://github.com/simhu/cubical


Results

Theorem (Bezem/Coquand/SH 2013)
There is a model of type theory based on cubical sets with
Kan structure supporting Π, Σ, data types like N (naturals),
and identity types (interpreted as path types).

Remark
I The usual definitional equalities for the identity type hold

only as propositional equalities. This can be fixed (Swan).
I Function extensionality is valid in the model.
I The model is formulated in constructive metatheory and

we can read of operational semantics. Type checker
implemented in Haskell.1

1github.com/simhu/cubical
(jww Cohen, Coquand, Mörtberg 2013)

https://github.com/simhu/cubical


Universes

A universe U can be interpreted by setting U(I) to be all small
types I ` A (with Kan structure).
Points in U are small cubical sets with Kan structure.

Theorem (SH)
U has a Kan structure.

This universe also satisfies the Univalence Axiom (not treated
in this thesis).



Part II.



Variation of Cubical Sets

One can extend the allowed operations in cubical sets:

Connections
new “degeneracies”:
given a line u(i) we get a
square

u(0)

u(0) u(j)

u(i)

u(i ∧ j)

Diagonals
allows to identify names:
a square v(i , j) has
diagonal v(i , i)

v(i ,
i)



Refined Model
(j.w.w. Cohen, Coquand, Mörtberg)

I Kan structure simplified: only require the “lid” not the
filler of open boxes; (but notion of open box more
general)

I glueing operation that justifies univalence and Kan
structure for U

I some higher inductive types like spheres and propositional
truncation



Cubical Type Theory
(j.w.w. Cohen, Coquand, Mörtberg)

Type theory inspired by this refined model where we directly
can argue about n-dimensional cubes.

Intuition
Judgments may depend on names i ranging over a formal
interval I:

i : I ` t(i) : A(i)

is a line connecting

t(0) : A(0) to t(1) : A(1)

t(0)
t(i)

t(1)



Cubical Type Theory
(j.w.w. Cohen, Coquand, Mörtberg)

I Extends type theory with:
I names, name abstraction, application
I path types
I compositions (Kan structure)
I glueing
I some higher inductive types

I Univalence and function extensionality are provable!
I Implementation: cubicaltt2

I Examples: univalence, function extensionality, categories,
universal algebra, S1, torus, . . .

2github.com/mortberg/cubicaltt

https://github.com/mortberg/cubicaltt


Meta-Mathematical Properties

Theorem (Cohen/Coquand/SH/Mörtberg)
Cubical Type Theory is consistent.

Conjecture
Cubical Type Theory has decidable type checking.

Canonicity Theorem (SH)
If I is a context of the form i1 : I, . . . , im : I (m > 0) and
I ` u : N, then I ` u = Sn 0 : N for a unique n ∈ N.



Summary

I two models of dependent type theory based on cubical
sets

I Cubical Type Theory (CTT): type theory where we can
argue about n-cubes; univalence and function
extensionality provable

I meta-mathematical properties of CTT: canonicity;
first step towards normalization and decidability of type
checking

Thank you!



Summary

I two models of dependent type theory based on cubical
sets

I Cubical Type Theory (CTT): type theory where we can
argue about n-cubes; univalence and function
extensionality provable

I meta-mathematical properties of CTT: canonicity;
first step towards normalization and decidability of type
checking

Thank you!





Example of Glueing

The glueing operation allows to glue types to parts of another
type along an equivalence.

A B

B B

E(i)

w

∼

B

idB

∼

w : EquivAB
idB : EquivB B

E (i) = Glue [(i = 0) 7→ (A,w),
(i = 1) 7→ (B, idB)]B



Ingredients of the Canonicity Proof

I define typed deterministic reduction I ` u � v : A
I adapt computability predicate method (Tait, Martin-Löf)

Inductive-recursive definition:I 
 A
I 
 A = B

I 
 u : A given I 
 A
I 
 u = v : A given I 
 A

I Expansion Lemma: if I ` u : A neutral, I 
 A,
J ` uf � vf : Af and J 
 vf : Af for f : J → I such that
J 
 vf = v1f : Af , then

I 
 u : A and I 
 u = v1 : A.
(Similarities to work by Angiuli/Harper/Wilson.)


