Cubical Interpretations of Type Theory

Simon Huber
University of Gothenburg

PhD Defense
Gothenburg, November 29, 2016

Intensional Type Theory

Martin-Löf type theory with intensional identity types lacks principles of extensionality such as:

- function extensionality

$$
\left(\Pi(x: A) f x=_{B} g x\right) \rightarrow f=\Pi(x: A) B g
$$

- isomorphic types are equal; gives

$$
A \cong B \rightarrow P(A) \rightarrow P(B)
$$

Both principles make type theory more modular for both programming and proofs!

Univalent Foundations

Voevodsky formulated the Univalence Axiom in 2009

- refinement of the principle that isomorphic types are equal
- UA implies function extensionality
- A new, surprising connection of type theory with homotopy theory! "Proofs of equalities are paths!"
- classical model using Kan simplicial sets; does not explain UA computationally

This Thesis

I. A model of dependent type theory in cubical sets, formulated in a constructive metatheory
II. Cubical Type Theory inspired by a refinement of this model where the Univalence Axiom is provable

Part I.

Cubical Sets: Intuition

- introduced by Kan (1955)
- A cubical set X is specified by points, lines, squares, cubes, ...
- Intuition: n-cubes should represent maps

$$
u: \mathbb{I}^{n} \rightarrow X, \quad \text { where } \mathbb{I}=[0,1]
$$

- Here: take $\left\{i_{1}, \ldots, i_{n}\right\}$ instead of n

$$
u\left(i_{1}, \ldots, i_{n}\right) \in X \quad\left(i_{1} \in \mathbb{I}, \ldots, i_{n} \in \mathbb{I}\right)
$$

"values depending on names $i_{1}, \ldots, i_{n} "$

Cubical Sets: Intuition

Basic operations are substitutions on names:

- taking a face: $\left\{\begin{array}{l}(u(i, j))(j / 0)=u(i, 0) \\ (u(i, j))(j / 1)=u(i, 1)\end{array}\right.$
- considering $u(i, j)$ as degenerate cube $v(i, j, k)=u(i, j)$ constant in direction k
- renaming a name $(u(i, j))(j / k)=u(i, k)$ (k fresh)

Cubical Sets

Fix countably infinite set of names/atoms/directions i, j, k, \ldots distinct from 0,1 .

A cubical set is a presheaf $X: \mathcal{C}^{\text {op }} \rightarrow$ Set where \mathcal{C} is the category of cubes given by:

- objects are finite sets of names $I=\left\{i_{1}, \ldots, i_{n}\right\}, n \geqslant 0$
- morphisms $f: J \rightarrow$ I given by maps $I \rightarrow J \cup\{0,1\}$ injective on the preimage of J
X given by:
- sets $X(I)$ (called I-cubes), $I=\left\{i_{1}, \ldots, i_{n}\right\}$
- maps $X(I) \rightarrow X(J), u \mapsto u f$ for $f: J \rightarrow I$ with $u \mathbf{1}=u$ and $(u f) g=u(f g)$

Presheaf Models of Type Theory

Cubical sets form a model of type theory (as does any presheaf category):

- contexts $\Gamma \vdash$ are cubical sets
- types $\Gamma \vdash A$: sets of "heterogeneous" cubes $A \rho$ over $\rho \in \Gamma(I)$

Presheaf Models of Type Theory

Cubical sets form a model of type theory (as does any presheaf category):

- contexts $\Gamma \vdash$ are cubical sets
- types $\Gamma \vdash A$: sets of "heterogeneous" cubes $A \rho$ over $\rho \in \Gamma(I)$

But equality not interesting. . .
... We Want: Proofs of Equalities are Paths!

A cubical set A has a path type:

$$
x: A, y: A \vdash \operatorname{Path}_{A} x y
$$

For $u, v \in A(I)$ the elements of $\operatorname{Path}_{A} u v$ are of the form

$$
\langle i\rangle w
$$

where

- $w \in A(I, i)$ and i fresh
- $w(i / 0)=u$ and $w(i / 1)=v$
- i is bound, so $\langle i\rangle w=\langle j\rangle w^{\prime}$ iff $w(i / j)=w^{\prime}$

Equality as Path?

The path type is reflexive $x: A \vdash \operatorname{refl} x:$ Path $_{A} x x$ interpreted by the constant path refl $u=\langle i\rangle u$.

To justify the usual elimination principle for identity types we need in particular Leibniz's indiscernibility of identicals: given $p:$ Path $_{A} u v$ and a type $x: A \vdash B(x)$ we want a map:

$$
\operatorname{transp} p: B(u) \rightarrow B(v)
$$

We need to require additional structure on types!!

Kan's Extension Property

Kan (1955) formulated an extension property on a cubical set: "any open box can be filled"

Kan Structure

- refines Kan's extension property
- structure, not a property
- uniform choice of fillers of open boxes
- allow more general open boxes

Results

Theorem (Bezem/Coquand/SH 2013)

There is a model of type theory based on cubical sets with Kan structure supporting Π, Σ, data types like N (naturals), and identity types (interpreted as path types).

Results

Theorem (Bezem/Coquand/SH 2013)

There is a model of type theory based on cubical sets with Kan structure supporting Π, Σ, data types like N (naturals), and identity types (interpreted as path types).

Remark

- The usual definitional equalities for the identity type hold only as propositional equalities. This can be fixed (Swan).
- Function extensionality is valid in the model.
- The model is formulated in constructive metatheory and we can read of operational semantics. Type checker implemented in Haskell. ${ }^{1}$

[^0]
Universes

A universe U can be interpreted by setting $U(I)$ to be all small types $I \vdash A$ (with Kan structure).
Points in U are small cubical sets with Kan structure.

Theorem (SH)
U has a Kan structure.

This universe also satisfies the Univalence Axiom (not treated in this thesis).

Part II.

Variation of Cubical Sets

One can extend the allowed operations in cubical sets:

Connections

 new "degeneracies": given a line $u(i)$ we get a square

Diagonals

allows to identify names:
a square $v(i, j)$ has diagonal $v(i, i)$

Refined Model

```
(j.w.w. Cohen, Coquand, Mörtberg)
```

- Kan structure simplified: only require the "lid" not the filler of open boxes; (but notion of open box more general)
- glueing operation that justifies univalence and Kan structure for U
- some higher inductive types like spheres and propositional truncation

Cubical Type Theory

(j.w.w. Cohen, Coquand, Mörtberg)

Type theory inspired by this refined model where we directly can argue about n-dimensional cubes.

Intuition

Judgments may depend on names i ranging over a formal interval \mathbb{I} :

$$
i: \mathbb{I} \vdash t(i): A(i)
$$

is a line connecting

$$
\begin{gathered}
t(0): A(0) \text { to } t(1): A(1) \\
t(0) \xrightarrow{t(i)} t(1)
\end{gathered}
$$

Cubical Type Theory

(j.w.w. Cohen, Coquand, Mörtberg)

- Extends type theory with:
- names, name abstraction, application
- path types
- compositions (Kan structure)
- glueing
- some higher inductive types
- Univalence and function extensionality are provable!
- Implementation: cubicaltt ${ }^{2}$
- Examples: univalence, function extensionality, categories, universal algebra, S^{1}, torus, ...
${ }^{2}$ github.com/mortberg/cubicaltt

Meta-Mathematical Properties

Theorem (Cohen/Coquand/SH/Mörtberg)
Cubical Type Theory is consistent.

Conjecture
Cubical Type Theory has decidable type checking.

Canonicity Theorem (SH)
If I is a context of the form $i_{1}: \mathbb{I}, \ldots, i_{m}: \mathbb{I}(m \geqslant 0)$ and $I \vdash u: \mathrm{N}$, then $I \vdash u=\mathrm{S}^{n} 0: \mathrm{N}$ for a unique $n \in \mathbb{N}$.

Summary

- two models of dependent type theory based on cubical sets
- Cubical Type Theory (CTT): type theory where we can argue about n-cubes; univalence and function extensionality provable
- meta-mathematical properties of CTT: canonicity; first step towards normalization and decidability of type checking

Summary

- two models of dependent type theory based on cubical sets
- Cubical Type Theory (CTT): type theory where we can argue about n-cubes; univalence and function extensionality provable
- meta-mathematical properties of CTT: canonicity; first step towards normalization and decidability of type checking

Thank you!

Example of Glueing

The glueing operation allows to glue types to parts of another type along an equivalence.

$$
\begin{aligned}
w: \text { Equiv } A B \\
\text { id }_{B}: \text { Equiv } B B
\end{aligned} \quad \begin{aligned}
E(i)=\text { Glue }[(i=0) & \mapsto(A, w), \\
(i=1) & \left.\mapsto\left(B, \mathrm{id}_{B}\right)\right] B
\end{aligned}
$$

Ingredients of the Canonicity Proof

- define typed deterministic reduction $I \vdash u \succ v: A$
- adapt computability predicate method (Tait, Martin-Löf) Inductive-recursive definition:

$$
\left\{\begin{array} { l l }
{ I \Vdash A } \\
{ I \Vdash A = B }
\end{array} \quad \left\{\begin{array}{ll}
I \Vdash u: A & \text { given } I \Vdash A \\
I \Vdash u=v: A & \text { given } I \Vdash A
\end{array}\right.\right.
$$

- Expansion Lemma: if $I \vdash u: A$ neutral, $I \Vdash A$, $J \vdash u f \succ v_{f}: A f$ and $J \Vdash v_{f}: A f$ for $f: J \rightarrow I$ such that $J \Vdash v_{f}=v_{\mathbf{1}} f: A f$, then

$$
I \Vdash u: A \text { and } I \Vdash u=v_{1}: A
$$

(Similarities to work by Angiuli/Harper/Wilson.)

[^0]: ${ }^{1}$ github.com/simhu/cubical
 (jww Cohen, Coquand, Mörtberg 2013)

