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Univalent Foundations

I Vladimir Voevodsky formulated the Univalence Axiom (UA) in
Martin-Löf Type Theory as a strong form of the Axiom of
Extensionality.

I UA is classically justified by the interpretation of types as Kan
simplicial sets

I However, this justification uses non-constructive steps. Hence
this does not provide a way to compute with univalence.

I Goal: give a constructive version of this model.



Simplicial Sets

The simplicial category ∆ is the category of finite non-zero
ordinals, i.e., with

I objects [n] = {0, . . . , n} (as totally ordered set), n ≥ 0, and

I morphisms the order preserving maps α : [n]→ [m].

A simplicial set X ∈ sSet is a presheaf on the category ∆, i.e., a
functor X : ∆op → Set.

X [0] // X [1]
oo
oo //

//
X [2]oo

oo

oo
X [3]

...

oo

oo
. . .
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Simplicial Sets

I A n-simplex x ∈ Xn is degenerate if there is a surjective
s : [n]� [m] with n > m and y ∈ Xm such that

x = y s.

I For example, the degenerate line of a point p ∈ X0 is

p
p s0
// p

where s0 : [1]→ [0].

I Degeneracy is in general not decidable (e.g., ∆1
N).



Presheaf Models of Type Theory

It is possible to interpret type theory in any presheaf category
Psh(C) := SetC

op
(of which sSet is a special case):

I The category of contexts Γ ` and substitutions σ : ∆→ Γ is
Psh(C); so a context Γ is given by

ΓX a set, for X ∈ C,
ΓX → ΓY a map, for f : Y → X in C,
ρ 7→ ρf

such that ρ1 = ρ, (ρf )g = ρ(fg).



Presheaf Models of Type Theory

I Types Γ ` A are given by

Aρ a set, for ρ : ΓX ,X ∈ C,
Aρ→ Aρf a map, for f : Y → X in C,

a 7→ af

such that a1 = a, (af )g = a(fg).

I Terms Γ ` t : A are given by tρ : Aρ such that (tρ)f = t(ρf ).



Presheaf Models of Type Theory

I For a map σ : ∆→ Γ and Γ ` A we define ∆ ` Aσ by

(Aσ)ρ =def A(σρ),

for ρ : ∆X .



Presheaf Models of Type Theory

I For Γ ` A the context extension Γ.A ` is defined as

(ρ, a) : (Γ.A)X iff ρ : ΓX and a : Aρ,

(ρ, a)f =def (ρf , af ).

We can define the projections p: Γ.A→ Γ and Γ.A ` q : A p by

p(ρ, a) =def ρ,

q(ρ, a) =def a.



Presheaf Models of Type Theory

It is also possible to interpret Π and Σ:

Γ ` A Γ.A ` B

Γ ` ΠAB

Γ ` A Γ.A ` B

Γ ` ΣAB



Types as Simplicial Sets

In the simplicial set model the interpretation of the equality type is
the path space, i.e., an equality proof of a0 and a1 is a path
connecting a0 with a1.

We fix the standard 1-simplex ∆1 (= Hom∆(·, [1])) serving as an
interval

I := ∆1.

This has two (global) elements ` 0, 1 : I.



Path Space

For a simplicial set A the exponent AI has a concrete description:

AI[0] = A[1], i.e., lines in A,

AI[1] = squares in A,

AI[2] = prisms in A,

. . .



Path Spaces

For Γ ` A and Γ ` a, b : A the path space

Γ ` PathA a b

is defined as

(PathA a b)ρ := {α ∈ AI ρ | α(0) = aρ and α(1) = bρ}

for ρ ∈ Γ[n].



Path Spaces

We want PathA to satisfy of the axioms of the identity type.

Reflexivity: for a : A the constant map refa : I→ A, refa = λi .a
gives an element of PathA a a.



Path Spaces: Extensionality

This path space verifies the axiom of extensionality

Γ.A ` p : PathB u v

Γ ` ext p : PathΠAB (λu) (λv)

(ext is basically the dependent version of A→ (I→ B) implies
I→ (A→ B).)



Path Space

In sSet we also have that the “singleton” type of Γ ` a : A is
contractible, i.e.,

iscontr
(∑
x :A

PathA a x
)

i.e., ∏
(x ,p):S

PathS (a, refa) (x , p)

with S := Σx : A .PathA a x .
In sSet we have the square:

a
p // x

a
refa
//

refa

OO
p
??

a

p

OO



Univalence?

Given two simplicial sets A and B, and a map σ : A→ B we can
associate a dependent type I ` E with E 0 = A and E 1 = B.

This will serve as path connecting A and B.

For ρ ∈ I[n], i.e., monotone ρ : [n]→ [1] we have to define the set
Eρ.

There are n + 2 such maps 0 < ρ1 < · · · < ρn < 1.

I E 0 = A[n] and E 1 = B[n];

I Eρk = {(a, b) | a : A[n − k], b : B[n], and bi = σ(a)}
with i : [n − k]→ [n] the canonical injection.



Path Space

What is missing in order to satisfy the axioms of the identity type?

Substitutivity, or Leibniz’s indiscernibility of identicals:

Γ ` transp :
∏
a,b:A

(
PathA a b → B(a)→ B(b)

)
for Γ ` A and Γ.A ` B.

There is no reason this should hold in general! We have to require
it!



Classical Justification of Transport

To justify the elimination rule for equality one has to restrict types
Γ ` A such that the projection p: Γ.A→ Γ is a Kan fibration, i.e.,

Λn
k

//
� _

��

Γ.A

p

��
∆n

//

==

Γ

(If Γ = 1, then A is called Kan complex.)

Constructively this will be expressed by a filling operator.



Classical Justification of Transport

Classically, this lifting property can then be extended to the wider
class of so called anodyne maps than just the horn inclusions
Λn
k ↪→ ∆n.

For example, for any simplicial set X the canonical maps

Λn
k × X ↪→ ∆n × X and

X → X I

are anodyne.



What can we say constructively?

Definition
A simplicial set X has decidable degeneracy if given x ∈ X [n] we
can decide whether x is degenerate or not, and if it is find
y ∈ X [n − 1] and η : [n]� [n − 1] such that

x = yη

In this case we also say X is decidable.

Theorem
If X has decidable degeneracy, then Λn

k × X ↪→ ∆n × X is anodyne
constructively.



Closure of Kan complexes under Π-Types

Closure under exponents: B Kan complex ⇒ BA Kan complex

I direct, combinatorial argument (see the book by May)

I using that Λn
k × A ↪→ ∆n × A is anodyne (see the book by

Gabriel and Zisman)



What can we do in a constructive meta-theory?

Two possible remedies:

1. modifying the notion of a “Kan fibration” by analyzing what
is needed to get the transport property;

2. use simplicial sets where we can decide degeneracy.



First Approach: Results

The first approach provides a model of type theory with Π, Σ, and
PathA justifying extensionality and containing counter-examples to
UIP.



Transport Maps

Γ ` A has transport maps if we have two sections ϕ+ and ϕ−

` ϕ+ :
∏
α:ΓI

(
Aα(0)→ Aα(1)

)
` ϕ− :

∏
α:ΓI

(
Aα(1)→ Aα(0)

)
such that ϕ± α a = a for α constant (where α : (ΓI)[n],
i : I[n],a : Aα(i)).



Properties

Lemma
Assume that Γ ` A has transport maps. Then there is a term
transp justifying the rule

Γ.A ` B Γ ` a, b : A Γ ` p : PathA a b Γ ` c : B[a]

Γ ` transp p c : B[b]
.

Moreover, we have transp refa c = c.

Lemma
If Γ ` A and Γ.A ` B have transport maps, so do Γ ` ΠAB and
Γ ` ΣAB.



What about closure under Path Space?

If we try to prove that Γ ` PathA a b has transport maps assuming
Γ ` A does, we are left to fill shapes in A like

aα(1) bα(1)

aα(0)

OO

// bα(0)

OO

to a square.

We need more general filling conditions for A!



n-Transport Properties

For n ≥ 1 and k = 0, 1 we define the simplicial set Dn
k as

Dn
k [m] := {(i1, . . . , in) ∈ In[m] | in = k or ∃l < n il ∈ {0[m], 1[m]}}.

For example, D2
0 corresponds to

OO

//

OO



n-Transport Properties

Γ ` A has the n-transport property if we have a sections for
k = 0, 1

` ψk :
∏
α:ΓIn

(∏
i :Dn

k

Aα(i)→
∏
j :In

Aα(j)
)

such that ψk α i a j = a j for j : Dn
k , and ψk α i a is constant

whenever α ∈ ΓIn and a(i) : Aα(i) (i : Dn
k ) are independent of the

last coordinate.



Properties

Lemma

1. If Γ ` A has the (n + 1)-transport property, then
Γ ` PathA a b has the n-transport property for all Γ ` a, b : A.

2. The n-transport property is closed under Σ.

3. If Γ ` A has the 1-transport property and Γ.A ` B has the
n-transport property, then Γ ` ΠAB has the n-transport
property.



Transport Fibrations

Γ ` A is a transport fibration if Γ ` A has the n-transport property
for all n ≥ 1.

Theorem
The transport fibrations form a model of type theory with Π, Σ
and PathA, justifying functional extensionality.

I In sSet the nerve N G of a group G gives us non-trivial
examples of a type satisfying this.

I Can be generalized for other presheaf categories and choices
of 0, 1 and I.

I Problem: it is rather hard to check this condition.



Second Approach (Work in Progress)

Instead of modifying the notion of Kan fibration, it seems possible
to work with simplicial sets where we can decide degeneracy, and
use the usual notion of Kan fibrations read constructively.

Idea: To Γ ∈ sSet associate Γ+ ∈ sSet where we can decide
degeneracy.

One can define
Γ+[n] =

∐
[n]�[m]

Γ[m].



Second Approach (Work in Progress)

We always have a morphism Γ+ → Γ, (η, a) 7→ aη. In general, it
doesn’t seem possible define constructively a map Γ→ Γ+. This is
possible if Γ is decidable.

More generally, any map ∆→ Γ for decidable ∆, induces a map
∆→ Γ+.

The assignment Γ 7→ Γ+ is functorial.

If Γ is Kan, so is Γ+.

This generalizes to types.



Thank you!


	Background

