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Lecture Il: Overview

1. H-Levels
2. Univalence Axiom

3. Higher Inductive Types
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Recap

. Voevodsky: model of type theory in simplicial sets!

“Types as spaces”

isContr(4) = X(a: A)ll(z:A).a=4x
isProp(A) = H(zxy:A).x=ay
isSet(A) = Il(zy: A).isProp(z =4 v)

propositions and types with decidable equality are sets

. isContr(singl a) where singla = X(x : A)a ==

5. with function extensionality: being contractible/a

proposition/a set is a propositions again
good closure properties
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Homotopy levels

One of Voevodsky's main contributions to type theory!

h-level n A expresses that homotopy-level of a type A is n:

h-level 0 A
h-level (n + 1) A

= isContr(A)
= II(z y: A).h-leveln (z =4 y)

h-level

0 contractible | N

1 proposition | Ng, N
2 set N, N>
3 groupoids ?

4 2-groupoids
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Homotopy equivalences (Voevodsky)

1. Let f: A— B.
2. For y : B define fiby(y) .= XE(x: A).fz =y
3. fis an equivalence if it has contractible fibers:

isEquiv(f) :=II(y : B).isContr(fibs(y))

4. A~ Biff X(f: A — B).isEquiv(f)
5. isEquiv(id4) like isContr(singl(a))
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Homotopy equivalences (Voevodsky)

1. Type of quasi-inverses of f denoted qinv(f):

g: B = A).(I(z - A). g(fz) = ) x (I(y : B). f(gy) = y)

(Compare this with "homotopy equivalences’ of spaces.)
2. qinv(f) < isEquiv(f)
3. Assuming function extensionality: isProp(isEquiv(f))
But not necessarily isProp(qinv(f)).

6/27



The univalence axiom

The univalence axiom specifies what the equality for universes
should be.

Define
idToEquivy : II(A B:U) A=y B— A~B

by path induction, mapping refl A to id4 proving A ~ A.

Univalence axiom (Voevodsky)

II(A B : U).isEquiv(idToEquivy A B)
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. The univalence axiom is a statement about a universe U

UAy II(A B : U).isEquiv(idToEquivy A B)

2. (A=y B)~ (A~ DB)

3. UA implies function extensionality! (Voevodsky)

4. UA implies

ua : I[[(AB:U)A~B—A=yB “naive univalence”
vag : I(AB:U)(f: A~ B)(x:A). “computation” rule
transport*X V)X (ya flz = fa

5. ua and uag also imply UA (Licata)

6. Open problem: does “naive univalence” already imply UA?
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UA and UIP?

Univalence is incompatible with uniqueness of identity proofs.

1. Define swap: Ny — Nj by:
swap(true) = false swap(false) = true

swap is its own quasi-inverse, thus an equivalence;
by UA we get: ua swap : No =y No;
we know: transport (ua swap) true = swap true = false,

but: transport 1y, true = true,

I T o

SO: Ua swap #N,—yN, 1In, and hence —isSet(U).
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Sharpening of —isSet(U)

Theorem (Kraus/Sattler)

Given a hierarchy of univalent universes Uy, U1, Us, . ..

Ug : Up U : Ug Us : Us

we have
—(h-level (n 4 2) Uy,).
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Special cases of univalence

1. If A, B : U are propositions (so have isProp(A4) and
isProp(B)), then:

(A+B)—»A~B
So UA implies propositional extensionality:
(A«~+B)—A=B

2. If A and B are sets, equivalence specializes to
bijection /isomorphism between sets.

3. If A and B are groupoids, equivalence specializes to
categorical equivalence.
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Equality of structures

Recall example of type CBin of types with a commutative
operation:

Y(A:U)(a:isSet(A))(m: AxA — A)ll(zy : A).m(z,y) = m(y, z)

Given A" = (A, aq,ma,pa) and B’ = (B,apg,mp,pp) there is an
obvious candidate of homomorphism:

f: A — B such that f(ma(z,y)) =mp(fx, fy)
Univalence lifts to isomorphisms of this algebraic structure:
(A= B~ (A =B

This works for many other algebraic structures (Aczel,
Coquand/Danielsson)
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Voevodsky gave a model of UA using Kan simplicial sets
formulated in a classical meta-theory (ZFC plus two inaccessible
cardinals).

(Various constructive models based on cubical sets; more later. . .)
So MLTT can't distinguish equivalent types:

Given P: U — U and A, B : U with A~ B, we can't have P A
but ﬁ(P B)

In contrast to set theory: {0} = {1} and 0 € {0}, but 0 ¢ {1}.
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Propositional truncation

» When is f: A — B surjective?

y: B)X(z: A). fe=y
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Propositional truncation
» When is f: A — B surjective?
Iy :B)X(z:A).fe=y

This is the space of sections!?

» Given a type A its propositional truncation is a proposition
|A|| with inc: A — ||A||, such that for any other type B with
isProp(B) there is a map

rec: (A— B) — |A|| — B

with: rec f (inca) = fa: B
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Propositional truncation
» When is f: A — B surjective?
Iy :B)X(z:A).fe=y

This is the space of sections!?

» Given a type A its propositional truncation is a proposition
|A|| with inc: A — ||A||, such that for any other type B with
isProp(B) there is a map

rec: (A— B) — |A|| — B

with: rec f (inca) = fa: B

» If A:U is a proposition, then A <+ || A, so A ~ ||A]|, so
A=Al

» || A| expresses that A is inhabited, but we can't extract its
witness in general
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The logic of h-propositions
We can define surjective as:
Iy : B) [X(z : A). fa =yl

This suggest a interpretation of the logical connectives as
(h-)propositions

T = N1
1 = NO
A=B = A—B
ANB = AxB
AVB = ||A+B|
V(z:A)B = I(z:A)B
dx:A)B = ||X(z:A)B|

This interpretation satisfies all the expected properties from logic.
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Classical logic

Voevodsky's simplicial set model validates the following form of
excluded middle:

LEM TII(A: U).isProp(A) — (A + —A)
(NB: A+ —Ais AV —A here since (A4 x —A).)

Omitting "“isProp(A)" is inconsistent with UA.
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Propositional truncation

What kind of type former is ||—||?

a:A w: || Al v ||A]
inca: ||A] squashu v : Id) 4 (u, v)

Has constructors for points and paths! (From the recursor one can
derive a suitable induction principle.)

Compare: inductive types specified by point constructors

n: N
0:N Sn:N

Propositional truncation is a higher inductive type (HIT).
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The circle St

We can represent the circle St as HIT

st:u base : S! loop : base = base base
What should be the eliminator for S1?
z:S'E C(:r:
Stelimg bl : H(a: D) ( )
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The circle St

We can represent the circle St as HIT

st:u base : S! loop : base = base
base
What should be the eliminator for S?
z:S'FC(x)
b : C(base) I : transport® loop b= b
St-elimg bl : (x : SY) C(z) 5on

St-elimg blbase = b : C(base)
apd (St-elimg b1) loop =C(base) !
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Q(S!, base) = Z in HoTT (Licata/Shulman)

Recall: Q(S', base) is base =g1 base

The classical proof uses a winding map C,_\)

w projecting a helix onto the circle. Q‘_\) R

Represent the fibers of this map (which N

is a fibration) as dependent type: :
S

Cover: S' — U
Cover base = Z base

ap Cover loop = ua sucEquiv

where sucEquiv is the equivalence
Z ~ 7 induced by successor.
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We want to prove (base =g1 base) ~ Z and then use univalence.
So we need maps:

1. base = base -+ 7Z
2. 7Z — base = base

which are inverses of each other.
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We want to prove (base =g1 base) ~ Z and then use univalence.
So we need maps:

1. base = base — Z
2. 7Z — base = base  Take: n — loop™ v

which are inverses of each other.
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We want to prove (base =g1 base) ~ Z and then use univalence.
So we need maps:

1. base = base — Z  Take: p > transport®e p0 v
2. Z — base = base  Take: n — loop” v
which are inverses of each other.
But how to prove that the composite
base = base — Z — base = base
is the identity?? X

We need to generalize using the “encode-decode” method!

Contribution of type theory to homotopy theory!
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The encode-decode method

Basic idea: generalize to maps
1. encode: TI(x : S!). base = 2 — Coverx
2. decode: II(z : S'). Coverz — base =
and show
3. H(z : SHII(p : base = z). decode, (encode, p) = p
4. M(z : SHT(c : Cover z). encode, (decode, c) = ¢

For (3) we can now use induction on p!

Instantiating to x := base gives and equivalence Q(S!, base) ~ Z.
(Recall: Cover base = 7Z)
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Generalizing the maps from before:

encode: II(z : S1). base = z — Coverx
encode, p := transport®er p 0

decode: II(z : S'). Coverz — base = x
decode basen = loop™
apd decodeloop = ...

Now
II(x : SHTI(p : base = z). decode, (encode, p) = p,
by induction follows from

decodepase(encodepase 1pase) = decodepase 0 = loop? = 1pace
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Higher inductive types

» Many other results from classical homotopy theory have been
proved synthetically.

» Synthetic development in HoTT suggested generalizations of
the Blakers-Massey theorem in homotopy theorem.

» There are many other interesting HITs: quotients, pushouts,
suspensions, set truncations, the torus, ...

» The main examples of HITs work in the cubical set model
(Coquand/SH/Mértberg LICS'18).

» So far: no general schema for HITs
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HoTT as a programming language?

Intensional MLTT without axioms explains each of its constants
computationally (e.g., induction for N).

Canonicity of MLTT
For F ¢ : N (in the empty context!) there exists n € N with

Ft=S"0:N.

This breaks with axioms (e.g., transport*X*V):N (ya ) 0)!

Can we somehow explain the computational content of the
univalence axiom?
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» Voevodsky's model uses the theory of Kan simplicial sets (and
fibrations), formulated in ZFC (plus inaccessible cardinals).

» Bezem/Coquand/Parman: various parts of the theory of Kan
simplicial sets are provably not constructive! Example:
B4 Kan whenever B is.

» Bezem/Coquand/SH (2013): constructive model using
cubical sets

» Cohen/Coquand/SH/Mértberg (2015): refined cubical set
model giving rise to cubical type theory and proof assistant
cubicaltt?

» SH (2016): canonicity for cubical type theory

'https://github.com/mortberg/cubicaltt
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https://github.com/mortberg/cubicaltt

Voevodsky's Conjecture

Voevodsky conjectured (2011):
There is a terminating algorithm that for any t : N which is
closed except that it may use the univalence axiom returns
an €N and a proof that Idy(t,S™ 0) (which may use the

univalence axiom).

Shulman (2015) has proved a truncated version of this.

Coquand’s modification (2018)

Is it possible to extend ordinary type theory with suitable
computation rules which “explain” the univalence axiom

in an effective way?
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A concrete problem

Homotopy groups: m,(A4, a) := ||Q"(A4, a)||set

Brunerie's number
74(S®) ~ Z/nZ for a term n : N involving UA and HITs

This is a result from Bruneries thesis (2016); it takes more than
half his of thesis to prove n = 2.

We formalized Brunerie's n : N in cubicaltt. However, the
computation of the normal form of n has been unfeasible (so far).
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