Homotopy type theory

Simon Huber
University of Gothenburg

Summer School on Types, Sets and Constructions, Hausdorff Research Institute for Mathematics,

Bonn, 3-9 May, 2018

Lecture II: Overview

1. H-Levels
2. Univalence Axiom
3. Higher Inductive Types

Recap

1. Voevodsky: model of type theory in simplicial sets! "Types as spaces"
2. isContr$(A) \equiv \Sigma(a: A) \Pi(x: A) . a={ }_{A} x$ $\operatorname{isProp}(A) \equiv \Pi(x y: A) \cdot x={ }_{A} y$ $\operatorname{isSet}(A) \quad \equiv \Pi(x y: A) . \operatorname{isProp}\left(x={ }_{A} y\right)$
3. propositions and types with decidable equality are sets
4. isContr(sing| a) where singl $a \equiv \Sigma(x: A) a=x$
5. with function extensionality: being contractible/a proposition/a set is a propositions again good closure properties

Homotopy levels

One of Voevodsky's main contributions to type theory!
h-level $n A$ expresses that homotopy-level of a type A is n :

$$
\begin{array}{lll}
\text { h-level } 0 A & \equiv & \text { isContr }(A) \\
\mathrm{h} \text {-level }(n+1) A & \equiv & \Pi(x y: A) \text {.h-level } n\left(x={ }_{A} y\right)
\end{array}
$$

h-level		
0	contractible	N_{1}
1	proposition	$\mathrm{N}_{0}, \mathrm{~N}_{1}$
2	set	$\mathrm{N}, \mathrm{N}_{2}$
3	groupoids	$?$
4	2-groupoids	
\ldots		

Homotopy equivalences (Voevodsky)

1. Let $f: A \rightarrow B$.
2. For $y: B$ define $\operatorname{fib}_{f}(y): \equiv \Sigma(x: A) . f x=y$
3. f is an equivalence if it has contractible fibers:

$$
\operatorname{isEquiv}(f): \equiv \Pi(y: B) . \operatorname{isContr}\left(\operatorname{fib}_{f}(y)\right)
$$

4. $A \simeq B$ iff $\Sigma(f: A \rightarrow B)$. isEquiv (f)
5. isEquiv $\left(\mathrm{id}_{A}\right)$ like isContr $(\operatorname{singl}(a))$

Homotopy equivalences (Voevodsky)

1. Type of quasi-inverses of f denoted $\operatorname{qinv}(f)$:
$\Sigma(g: B \rightarrow A) \cdot(\Pi(x: A) \cdot g(f x)=x) \times(\Pi(y: B) \cdot f(g y)=y)$
(Compare this with 'homotopy equivalences' of spaces.)
2. $\operatorname{qinv}(f) \leftrightarrow \operatorname{isEquiv}(f)$
3. Assuming function extensionality: isProp(isEquiv $(f))$ But not necessarily isProp $(\operatorname{qinv}(f))$.

The univalence axiom

The univalence axiom specifies what the equality for universes should be.

Define

$$
\text { idToEquiv }_{\mathrm{U}}: \Pi(A B: \mathrm{U}) \cdot A=\mathrm{u} B \rightarrow A \simeq B
$$

by path induction, mapping refl A to id_{A} proving $A \simeq A$.

Univalence axiom (Voevodsky)
$\Pi(A B: \mathrm{U})$. isEquiv(idToEquiv $\left.{ }_{\mathrm{U}} A B\right)$

1. The univalence axiom is a statement about a universe U

$$
\left.\mathrm{UA}_{\mathrm{U}} \quad \Pi(A B: \mathrm{U}) . \text { isEquiv(idToEquiv }{ }_{\mathrm{U}} A B\right)
$$

2. $(A=\mathrm{\cup} B) \simeq(A \simeq B)$
3. UA implies function extensionality! (Voevodsky)
4. UA implies

$$
\begin{array}{ccc}
\text { ua }: ~ \Pi(A B: \mathrm{U}) \cdot A \simeq B \rightarrow A=\mathrm{u} B & \text { "naive univalence" } \\
\text { ua }_{\beta}: & \Pi(A B: \mathrm{U})(f: A \simeq B)(x: A) . & \text { "computation" rule } \\
& \operatorname{transport}{ }^{\lambda(X: U) \cdot X}(\text { ua } f) x=f x &
\end{array}
$$

5. ua and ua ${ }_{\beta}$ also imply UA (Licata)
6. Open problem: does "naive univalence" already imply UA?

UA and UIP?

Univalence is incompatible with uniqueness of identity proofs.

1. Define swap: $\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}$ by:

$$
\operatorname{swap}(\text { true })=\text { false } \quad \operatorname{swap}(\text { false })=\text { true }
$$

2. swap is its own quasi-inverse, thus an equivalence;
3. by UA we get: ua swap: $N_{2}=u N_{2}$;
4. we know: transport (ua swap) true = swap true \equiv false,
5. but: transport $1_{\mathrm{N}_{2}}$ true \equiv true,
6. so: ua swap $\neq \mathrm{N}_{2}=\mathrm{u} \mathrm{N}_{2} 1_{\mathrm{N}_{2}}$ and hence $\neg \mathrm{isSet}(\mathrm{U})$.

Sharpening of \neg isSet (U)

Theorem (Kraus/Sattler)
Given a hierarchy of univalent universes $\mathrm{U}_{0}, \mathrm{U}_{1}, \mathrm{U}_{2}, \ldots$

$$
\begin{array}{llll}
\mathrm{U}_{0}: \mathrm{U}_{1} & \mathrm{U}_{1}: \mathrm{U}_{2} & \mathrm{U}_{2}: \mathrm{U}_{3} & \ldots
\end{array}
$$

we have

$$
\neg\left(\mathrm{h} \text {-level }(n+2) \mathrm{U}_{n}\right)
$$

Special cases of univalence

1. If $A, B: \mathrm{U}$ are propositions (so have isProp (A) and isProp (B)), then:

$$
(A \leftrightarrow B) \rightarrow A \simeq B
$$

So UA implies propositional extensionality:

$$
(A \leftrightarrow B) \rightarrow A=B
$$

2. If A and B are sets, equivalence specializes to bijection/isomorphism between sets.
3. If A and B are groupoids, equivalence specializes to categorical equivalence.

Equality of structures

Recall example of type CBin of types with a commutative operation:
$\Sigma(A: \mathrm{U})(\alpha: \operatorname{isSet}(A))(m: A \times A \rightarrow A) \Pi(x y: A) . m(x, y)=m(y, x)$
Given $A^{\prime}=\left(A, \alpha_{A}, m_{A}, p_{A}\right)$ and $B^{\prime}=\left(B, \alpha_{B}, m_{B}, p_{B}\right)$ there is an obvious candidate of homomorphism:

$$
f: A \rightarrow B \text { such that } f\left(m_{A}(x, y)\right)=m_{B}(f x, f y)
$$

Univalence lifts to isomorphisms of this algebraic structure:

$$
\left(A^{\prime} \cong B^{\prime}\right) \simeq\left(A^{\prime}=B^{\prime}\right)
$$

This works for many other algebraic structures (Aczel, Coquand/Danielsson)

Voevodsky gave a model of UA using Kan simplicial sets formulated in a classical meta-theory (ZFC plus two inaccessible cardinals).
(Various constructive models based on cubical sets; more later...)
So MLTT can't distinguish equivalent types:
Given $P: \cup \rightarrow \mathrm{U}$ and $A, B: \mathrm{U}$ with $A \simeq B$, we can't have $P A$ but $\neg(P B)$.

In contrast to set theory: $\{0\} \cong\{1\}$ and $0 \in\{0\}$, but $0 \notin\{1\}$.

Propositional truncation

- When is $f: A \rightarrow B$ surjective?

$$
\Pi(y: B) \Sigma(x: A) . f x=y
$$

Propositional truncation

- When is $f: A \rightarrow B$ surjective?

$$
\Pi(y: B) \Sigma(x: A) . f x=y
$$

This is the space of sections!?

Propositional truncation

- When is $f: A \rightarrow B$ surjective?

$$
\Pi(y: B) \Sigma(x: A) . f x=y
$$

This is the space of sections!?

- Given a type A its propositional truncation is a proposition $\|A\|$ with inc: $A \rightarrow\|A\|$, such that for any other type B with isProp (B) there is a map

$$
\text { rec: }(A \rightarrow B) \rightarrow\|A\| \rightarrow B
$$

with: $\operatorname{rec} f(\operatorname{inc} a) \equiv f a: B$

Propositional truncation

- When is $f: A \rightarrow B$ surjective?

$$
\Pi(y: B) \Sigma(x: A) . f x=y
$$

This is the space of sections!?

- Given a type A its propositional truncation is a proposition $\|A\|$ with inc: $A \rightarrow\|A\|$, such that for any other type B with isProp (B) there is a map

$$
\text { rec: }(A \rightarrow B) \rightarrow\|A\| \rightarrow B
$$

with: $\operatorname{rec} f(\operatorname{inc} a) \equiv f a: B$

- If $A: \mathrm{U}$ is a proposition, then $A \leftrightarrow\|A\|$, so $A \simeq\|A\|$, so $A=\|A\|$.
- $\|A\|$ expresses that A is inhabited, but we can't extract its witness in general

The logic of h-propositions

We can define surjective as:

$$
\Pi(y: B)\|\Sigma(x: A) . f x=y\|
$$

This suggest a interpretation of the logical connectives as (h-)propositions

$$
\begin{aligned}
\top & \equiv \mathrm{N}_{1} \\
\perp & \equiv \mathrm{~N}_{0} \\
A \Rightarrow B & \equiv A \rightarrow B \\
A \wedge B & \equiv A \times B \\
A \vee B & \equiv\|A+B\| \\
\forall(x: A) B & \equiv \Pi(x: A) B \\
\exists(x: A) B & \equiv\|\Sigma(x: A) B\|
\end{aligned}
$$

This interpretation satisfies all the expected properties from logic.

Classical logic

Voevodsky's simplicial set model validates the following form of excluded middle:
LEM $\quad \Pi(A: \mathrm{U})$. isProp $(A) \rightarrow(A+\neg A)$
(NB: $A+\neg A$ is $A \vee \neg A$ here since $\neg(A \times \neg A)$.)
Omitting "isProp (A) " is inconsistent with UA.

Propositional truncation

What kind of type former is $\|-\|$?

$$
\frac{a: A}{\operatorname{inc} a:\|A\|}
$$

$$
\frac{u:\|A\| \quad v:\|A\|}{\text { squash } u v: \operatorname{Id}_{\|A\|}(u, v)}
$$

Has constructors for points and paths! (From the recursor one can derive a suitable induction principle.)

Compare: inductive types specified by point constructors

$$
\overline{0: \mathrm{N}} \quad \frac{n: \mathrm{N}}{\mathrm{~S} n: \mathrm{N}}
$$

Propositional truncation is a higher inductive type (HIT).

The circle \mathbb{S}^{1}

We can represent the circle \mathbb{S}^{1} as HIT

$$
\overline{\mathbb{S}^{1}: \mathrm{U}} \quad \overline{\text { base }: \mathbb{S}^{1}} \quad \overline{\text { loop : base }=\text { base }}
$$

What should be the eliminator for \mathbb{S}^{1} ?

$$
\begin{gathered}
x: \mathbb{S}^{1} \vdash C(x) \\
\frac{b: C(\text { base }) \quad l: b=b ? ? ? ?}{\mathbb{S}^{1}-\operatorname{elim}_{C} b l: \Pi\left(x: \mathbb{S}^{1}\right) C(x)}
\end{gathered}
$$

The circle \mathbb{S}^{1}

We can represent the circle \mathbb{S}^{1} as HIT

$$
\overline{\mathbb{S}^{1}: U} \quad \overline{\text { base }: \mathbb{S}^{1}} \quad \overline{\text { loop : base }=\text { base }}
$$

What should be the eliminator for \mathbb{S}^{1} ?

$$
\left.\begin{array}{c}
x: \mathbb{S}^{1} \vdash C(x) \\
b: C(\text { base }) \quad l: \text { transport }^{C} \text { loop } b=b \\
\mathbb{S}^{1} \text {-elim } \\
C \\
b l: \Pi\left(x: \mathbb{S}^{1}\right) C(x) \\
\mathbb{S}^{1} \text {-elim } \\
\text { apd }\left(\mathbb{S}^{1} \text {-elim }{ }_{C} b l\right) \text { base } \equiv b: C(\text { base }) \\
C(\text { base })
\end{array}\right]
$$

$\Omega\left(\mathbb{S}^{1}\right.$, base $)=\mathbb{Z}$ in HoTT (Licata/Shulman)

Recall: $\Omega\left(\mathbb{S}^{1}\right.$, base $)$ is base $=_{\mathbb{S}^{1}}$ base
The classical proof uses a winding map w projecting a helix onto the circle. Represent the fibers of this map (which is a fibration) as dependent type:

$$
\begin{aligned}
& \text { Cover: } \mathbb{S}^{1} \rightarrow \mathbb{U} \\
& \text { Cover base }=\mathbb{Z} \\
& \text { ap Cover loop }=\text { ua sucEquiv }
\end{aligned}
$$

where sucEquiv is the equivalence $\mathbb{Z} \simeq \mathbb{Z}$ induced by successor.

We want to prove (base $=_{\mathbb{S}^{1}}$ base) $\simeq \mathbb{Z}$ and then use univalence.
So we need maps:

1. base $=$ base $\rightarrow \mathbb{Z}$
2. $\mathbb{Z} \rightarrow$ base $=$ base
which are inverses of each other.

We want to prove (base $=_{\mathbb{S}^{1}}$ base) $\simeq \mathbb{Z}$ and then use univalence. So we need maps:

1. base $=$ base $\rightarrow \mathbb{Z}$
2. $\mathbb{Z} \rightarrow$ base $=$ base \quad Take: $n \mapsto$ loop n which are inverses of each other.

We want to prove (base $=_{\mathbb{S}^{1}}$ base) $\simeq \mathbb{Z}$ and then use univalence. So we need maps:

1. base $=$ base $\rightarrow \mathbb{Z} \quad$ Take: $p \mapsto$ transport ${ }^{\text {Cover }} p 0$
2. $\mathbb{Z} \rightarrow$ base $=$ base Take: $n \mapsto$ loop n
which are inverses of each other.
But how to prove that the composite

$$
\text { base }=\text { base } \rightarrow \mathbb{Z} \rightarrow \text { base }=\text { base }
$$

is the identity??
We need to generalize using the "encode-decode" method!
Contribution of type theory to homotopy theory!

The encode-decode method

Basic idea: generalize to maps

1. encode: $\Pi\left(x: \mathbb{S}^{1}\right)$. base $=x \rightarrow$ Cover x
2. decode: $\Pi\left(x: \mathbb{S}^{1}\right)$. Cover $x \rightarrow$ base $=x$
and show
3. $\Pi\left(x: \mathbb{S}^{1}\right) \Pi(p:$ base $=x) . \operatorname{decode}_{x}\left(\operatorname{encode}_{x} p\right)=p$
4. $\Pi\left(x: \mathbb{S}^{1}\right) \Pi(c:$ Cover $x)$. encode ${ }_{x}\left(\operatorname{decode}_{x} c\right)=c$

For (3) we can now use induction on p !
Instantiating to $x: \equiv$ base gives and equivalence $\Omega\left(\mathbb{S}^{1}\right.$, base $) \simeq \mathbb{Z}$.
(Recall: Cover base $=\mathbb{Z}$)

Generalizing the maps from before:

$$
\begin{aligned}
& \text { encode: } \Pi\left(x: \mathbb{S}^{1}\right) . \text { base }=x \rightarrow \text { Cover } x \\
& \text { encode }_{x} p: \equiv \text { transport }{ }^{\text {Cover }} p 0 \\
& \text { decode: } \Pi\left(x: \mathbb{S}^{1}\right) \text {. Cover } x \rightarrow \text { base }=x \\
& \text { decode base } n=\text { loop }^{n} \\
& \text { apd decode loop }=\ldots
\end{aligned}
$$

Now

$$
\Pi\left(x: \mathbb{S}^{1}\right) \Pi(p: \text { base }=x) \cdot \operatorname{decode}_{x}\left(\operatorname{encode}_{x} p\right)=p
$$

by induction follows from
$\operatorname{decode}_{\text {base }}\left(\right.$ encode $\left._{\text {base }} 1_{\text {base }}\right)=\operatorname{decode}_{\text {base }} 0=\operatorname{loop}^{0}=1_{\text {base }}$

Higher inductive types

- Many other results from classical homotopy theory have been proved synthetically.
- Synthetic development in HoTT suggested generalizations of the Blakers-Massey theorem in homotopy theorem.
- There are many other interesting HITs: quotients, pushouts, suspensions, set truncations, the torus, ...
- The main examples of HITs work in the cubical set model (Coquand/SH/Mörtberg LICS'18).
- So far: no general schema for HITs

HoTT as a programming language?

Intensional MLTT without axioms explains each of its constants computationally (e.g., induction for N).

Canonicity of MLTT
For $\vdash t: \mathrm{N}$ (in the empty context!) there exists $n \in \mathbb{N}$ with $\vdash t \equiv \mathrm{~S}^{n} 0: \mathrm{N}$.

This breaks with axioms (e.g., transport ${ }^{\lambda(X: U) . N}($ ua \ldots. . 0$)$!
Can we somehow explain the computational content of the univalence axiom?

- Voevodsky's model uses the theory of Kan simplicial sets (and fibrations), formulated in ZFC (plus inaccessible cardinals).
- Bezem/Coquand/Parman: various parts of the theory of Kan simplicial sets are provably not constructive! Example: B^{A} Kan whenever B is.
- Bezem/Coquand/SH (2013): constructive model using cubical sets
- Cohen/Coquand/SH/Mörtberg (2015): refined cubical set model giving rise to cubical type theory and proof assistant cubicaltt ${ }^{1}$
- SH (2016): canonicity for cubical type theory

[^0]
Voevodsky's Conjecture

Voevodsky conjectured (2011):
There is a terminating algorithm that for any $t: \mathrm{N}$ which is closed except that it may use the univalence axiom returns a $n \in \mathbb{N}$ and a proof that $\operatorname{ld}_{\mathrm{N}}\left(t, \mathrm{~S}^{n} 0\right)$ (which may use the univalence axiom).

Shulman (2015) has proved a truncated version of this.

Coquand's modification (2018)
Is it possible to extend ordinary type theory with suitable computation rules which "explain" the univalence axiom in an effective way?

A concrete problem

Homotopy groups: $\pi_{n}(A, a): \equiv\left\|\Omega^{n}(A, a)\right\|_{\text {set }}$
Brunerie's number
$\pi_{4}\left(\mathbb{S}^{3}\right) \simeq \mathbb{Z} / n \mathbb{Z}$ for a term $n: \mathrm{N}$ involving UA and HITs

This is a result from Bruneries thesis (2016); it takes more than half his of thesis to prove $n=2$.

We formalized Brunerie's n : N in cubicaltt. However, the computation of the normal form of n has been unfeasible (so far).

[^0]: ${ }^{1}$ https://github.com/mortberg/cubicaltt

