
Homotopy type theory

Simon Huber

University of Gothenburg

Summer School on Types, Sets and Constructions,
Hausdorff Research Institute for Mathematics,

Bonn, 3–9 May, 2018

1 / 27



Lecture II: Overview

1. H-Levels
2. Univalence Axiom
3. Higher Inductive Types

2 / 27



Recap

1. Voevodsky: model of type theory in simplicial sets!
“Types as spaces”

2. isContr(A) ≡ Σ(a : A)Π(x : A). a =A x
isProp(A) ≡ Π(x y : A). x =A y
isSet(A) ≡ Π(x y : A). isProp(x =A y)

3. propositions and types with decidable equality are sets
4. isContr(singl a) where singl a ≡ Σ(x : A)a = x

5. with function extensionality: being contractible/a
proposition/a set is a propositions again
good closure properties

3 / 27



Homotopy levels

One of Voevodsky’s main contributions to type theory!

h-levelnA expresses that homotopy-level of a type A is n:

h-level 0A ≡ isContr(A)
h-level (n+ 1)A ≡ Π(x y : A). h-leveln (x =A y)

h-level
0 contractible N1
1 proposition N0, N1
2 set N,N2
3 groupoids ?
4 2-groupoids
. . .

4 / 27



Homotopy equivalences (Voevodsky)

1. Let f : A→ B.
2. For y : B define fibf (y) :≡ Σ(x : A).f x = y

3. f is an equivalence if it has contractible fibers:

isEquiv(f) :≡ Π(y : B). isContr(fibf (y))

4. A ' B iff Σ(f : A→ B). isEquiv(f)
5. isEquiv(idA) like isContr(singl(a))

5 / 27



Homotopy equivalences (Voevodsky)

1. Type of quasi-inverses of f denoted qinv(f):

Σ(g : B → A).(Π(x : A). g(f x) = x)× (Π(y : B). f(g y) = y)

(Compare this with ’homotopy equivalences’ of spaces.)
2. qinv(f)↔ isEquiv(f)
3. Assuming function extensionality: isProp(isEquiv(f))

But not necessarily isProp(qinv(f)).

6 / 27



The univalence axiom

The univalence axiom specifies what the equality for universes
should be.

Define

idToEquivU : Π(A B : U).A =U B → A ' B

by path induction, mapping reflA to idA proving A ' A.

Univalence axiom (Voevodsky)

Π(A B : U). isEquiv(idToEquivUAB)

7 / 27



1. The univalence axiom is a statement about a universe U

UAU Π(A B : U). isEquiv(idToEquivUAB)

2. (A =U B) ' (A ' B)
3. UA implies function extensionality! (Voevodsky)
4. UA implies

ua : Π(AB : U). A ' B → A =U B “naive univalence”
uaβ : Π(AB : U)(f : A ' B)(x : A). “computation” rule

transportλ(X:U).X(ua f)x = f x

5. ua and uaβ also imply UA (Licata)
6. Open problem: does “naive univalence” already imply UA?

8 / 27



UA and UIP?

Univalence is incompatible with uniqueness of identity proofs.
1. Define swap : N2 → N2 by:

swap(true) = false swap(false) = true

2. swap is its own quasi-inverse, thus an equivalence;
3. by UA we get: ua swap : N2 =U N2;
4. we know: transport (ua swap) true = swap true ≡ false,
5. but: transport 1N2 true ≡ true,
6. so: ua swap 6=N2=UN2 1N2 and hence ¬ isSet(U).

9 / 27



Sharpening of ¬ isSet(U)

Theorem (Kraus/Sattler)
Given a hierarchy of univalent universes U0,U1,U2, . . .

U0 : U1 U1 : U2 U2 : U3 . . .

we have
¬(h-level (n+ 2) Un).

10 / 27



Special cases of univalence

1. If A,B : U are propositions (so have isProp(A) and
isProp(B)), then:

(A↔ B)→ A ' B

So UA implies propositional extensionality:

(A↔ B)→ A = B

2. If A and B are sets, equivalence specializes to
bijection/isomorphism between sets.

3. If A and B are groupoids, equivalence specializes to
categorical equivalence.

11 / 27



Equality of structures

Recall example of type CBin of types with a commutative
operation:

Σ(A : U)(α : isSet(A))(m : A×A→ A)Π(x y : A).m(x, y) = m(y, x)

Given A′ = (A,αA,mA, pA) and B′ = (B,αB,mB, pB) there is an
obvious candidate of homomorphism:

f : A→ B such that f(mA(x, y)) = mB(f x, f y)

Univalence lifts to isomorphisms of this algebraic structure:

(A′ ∼= B′) ' (A′ = B′)

This works for many other algebraic structures (Aczel,
Coquand/Danielsson)

12 / 27



Voevodsky gave a model of UA using Kan simplicial sets
formulated in a classical meta-theory (ZFC plus two inaccessible
cardinals).

(Various constructive models based on cubical sets; more later. . . )

So MLTT can’t distinguish equivalent types:
Given P : U→ U and A,B : U with A ' B, we can’t have P A
but ¬(P B).

In contrast to set theory: {0} ∼= {1} and 0 ∈ {0}, but 0 /∈ {1}.

13 / 27



Propositional truncation

I When is f : A→ B surjective?

Π(y : B)Σ(x : A). f x = y

I Given a type A its propositional truncation is a proposition
‖A‖ with inc : A→ ‖A‖, such that for any other type B with
isProp(B) there is a map

rec : (A→ B)→ ‖A‖ → B

with: rec f (inc a) ≡ f a : B
I If A : U is a proposition, then A↔ ‖A‖, so A ' ‖A‖, so
A = ‖A‖.

I ‖A‖ expresses that A is inhabited, but we can’t extract its
witness in general

14 / 27



Propositional truncation
I When is f : A→ B surjective?

Π(y : B)Σ(x : A). f x = y

This is the space of sections!?

I Given a type A its propositional truncation is a proposition
‖A‖ with inc : A→ ‖A‖, such that for any other type B with
isProp(B) there is a map

rec : (A→ B)→ ‖A‖ → B

with: rec f (inc a) ≡ f a : B
I If A : U is a proposition, then A↔ ‖A‖, so A ' ‖A‖, so
A = ‖A‖.

I ‖A‖ expresses that A is inhabited, but we can’t extract its
witness in general

14 / 27



Propositional truncation
I When is f : A→ B surjective?

Π(y : B)Σ(x : A). f x = y

This is the space of sections!?
I Given a type A its propositional truncation is a proposition
‖A‖ with inc : A→ ‖A‖, such that for any other type B with
isProp(B) there is a map

rec : (A→ B)→ ‖A‖ → B

with: rec f (inc a) ≡ f a : B

I If A : U is a proposition, then A↔ ‖A‖, so A ' ‖A‖, so
A = ‖A‖.

I ‖A‖ expresses that A is inhabited, but we can’t extract its
witness in general

14 / 27



Propositional truncation
I When is f : A→ B surjective?

Π(y : B)Σ(x : A). f x = y

This is the space of sections!?
I Given a type A its propositional truncation is a proposition
‖A‖ with inc : A→ ‖A‖, such that for any other type B with
isProp(B) there is a map

rec : (A→ B)→ ‖A‖ → B

with: rec f (inc a) ≡ f a : B
I If A : U is a proposition, then A↔ ‖A‖, so A ' ‖A‖, so
A = ‖A‖.

I ‖A‖ expresses that A is inhabited, but we can’t extract its
witness in general

14 / 27



The logic of h-propositions

We can define surjective as:

Π(y : B) ‖Σ(x : A). f x = y‖

This suggest a interpretation of the logical connectives as
(h-)propositions

> ≡ N1
⊥ ≡ N0

A⇒ B ≡ A→ B
A ∧B ≡ A×B
A ∨B ≡ ‖A+B‖

∀(x : A)B ≡ Π(x : A)B
∃(x : A)B ≡ ‖Σ(x : A)B‖

This interpretation satisfies all the expected properties from logic.

15 / 27



Classical logic

Voevodsky’s simplicial set model validates the following form of
excluded middle:

LEM Π(A : U). isProp(A)→ (A+ ¬A)
(NB: A+ ¬A is A ∨ ¬A here since ¬(A× ¬A).)

Omitting “isProp(A)” is inconsistent with UA.

16 / 27



Propositional truncation

What kind of type former is ‖−‖?

a : A
inc a : ‖A‖

u : ‖A‖ v : ‖A‖
squashu v : Id‖A‖(u, v)

Has constructors for points and paths! (From the recursor one can
derive a suitable induction principle.)

Compare: inductive types specified by point constructors

0 : N
n : N

Sn : N

Propositional truncation is a higher inductive type (HIT).

17 / 27



The circle S1

We can represent the circle S1 as HIT

S1 : U base : S1 loop : base = base

What should be the eliminator for S1?

x : S1 ` C(x)
b : C(base) l : b = b ????
S1-elimC b l : Π(x : S1)C(x)

base•

loop

18 / 27



The circle S1

We can represent the circle S1 as HIT

S1 : U base : S1 loop : base = base

What should be the eliminator for S1?

x : S1 ` C(x)
b : C(base) l : transportC loop b = b

S1-elimC b l : Π(x : S1)C(x)

S1-elimC b l base ≡ b : C(base)
apd (S1-elimC b l ) loop =C(base) l

base•

loop

18 / 27



Ω(S1, base) = Z in HoTT (Licata/Shulman)

Recall: Ω(S1, base) is base =S1 base

The classical proof uses a winding map
w projecting a helix onto the circle.
Represent the fibers of this map (which
is a fibration) as dependent type:

Cover : S1 → U
Cover base = Z
ap Cover loop = ua sucEquiv

where sucEquiv is the equivalence
Z ' Z induced by successor.

R

S1

w

base

0

1

2

19 / 27



We want to prove (base =S1 base) ' Z and then use univalence.
So we need maps:
1. base = base→ Z
2. Z→ base = base

which are inverses of each other.

20 / 27



We want to prove (base =S1 base) ' Z and then use univalence.
So we need maps:
1. base = base→ Z
2. Z→ base = base Take: n 7→ loopn X

which are inverses of each other.

20 / 27



We want to prove (base =S1 base) ' Z and then use univalence.
So we need maps:
1. base = base→ Z Take: p 7→ transportCover p 0 X
2. Z→ base = base Take: n 7→ loopn X

which are inverses of each other.
But how to prove that the composite

base = base→ Z→ base = base

is the identity?? X

We need to generalize using the “encode-decode” method!

Contribution of type theory to homotopy theory!

20 / 27



The encode-decode method

Basic idea: generalize to maps
1. encode : Π(x : S1). base = x→ Cover x
2. decode : Π(x : S1). Cover x→ base = x

and show
3. Π(x : S1)Π(p : base = x). decodex(encodex p) = p

4. Π(x : S1)Π(c : Cover x). encodex(decodex c) = c

For (3) we can now use induction on p!

Instantiating to x :≡ base gives and equivalence Ω(S1, base) ' Z.
(Recall: Cover base = Z)

21 / 27



Generalizing the maps from before:

encode : Π(x : S1). base = x→ Cover x
encodex p :≡ transportCover p 0

decode : Π(x : S1). Cover x→ base = x
decode basen = loopn
apd decode loop = . . .

Now

Π(x : S1)Π(p : base = x). decodex(encodex p) = p,

by induction follows from

decodebase(encodebase 1base) = decodebase 0 = loop0 = 1base

22 / 27



Higher inductive types

I Many other results from classical homotopy theory have been
proved synthetically.

I Synthetic development in HoTT suggested generalizations of
the Blakers-Massey theorem in homotopy theorem.

I There are many other interesting HITs: quotients, pushouts,
suspensions, set truncations, the torus, . . .

I The main examples of HITs work in the cubical set model
(Coquand/SH/Mörtberg LICS’18).

I So far: no general schema for HITs

23 / 27



HoTT as a programming language?

Intensional MLTT without axioms explains each of its constants
computationally (e.g., induction for N).

Canonicity of MLTT
For ` t : N (in the empty context!) there exists n ∈ N with
` t ≡ Sn 0 : N.

This breaks with axioms (e.g., transportλ(X:U).N (ua . . . ) 0)!

Can we somehow explain the computational content of the
univalence axiom?

24 / 27



I Voevodsky’s model uses the theory of Kan simplicial sets (and
fibrations), formulated in ZFC (plus inaccessible cardinals).

I Bezem/Coquand/Parman: various parts of the theory of Kan
simplicial sets are provably not constructive! Example:
BA Kan whenever B is.

I Bezem/Coquand/SH (2013): constructive model using
cubical sets

I Cohen/Coquand/SH/Mörtberg (2015): refined cubical set
model giving rise to cubical type theory and proof assistant
cubicaltt1

I SH (2016): canonicity for cubical type theory

1https://github.com/mortberg/cubicaltt
25 / 27

https://github.com/mortberg/cubicaltt


Voevodsky’s Conjecture

Voevodsky conjectured (2011):
There is a terminating algorithm that for any t : N which is
closed except that it may use the univalence axiom returns
a n ∈ N and a proof that IdN(t, Sn 0) (which may use the
univalence axiom).

Shulman (2015) has proved a truncated version of this.

Coquand’s modification (2018)
Is it possible to extend ordinary type theory with suitable
computation rules which “explain” the univalence axiom
in an effective way?

26 / 27



A concrete problem

Homotopy groups: πn(A, a) :≡ ‖Ωn(A, a)‖set

Brunerie’s number
π4(S3) ' Z/nZ for a term n : N involving UA and HITs

This is a result from Bruneries thesis (2016); it takes more than
half his of thesis to prove n = 2.

We formalized Brunerie’s n : N in cubicaltt. However, the
computation of the normal form of n has been unfeasible (so far).

27 / 27


