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Overview

Part I. Homotopy type theory

Main reference: HoTT Book
homotopytypetheory.org/book/

Part II. Cubical type theory
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Lecture I: Equality, equality, equality!

1. Intensional Martin-Löf type theory
2. Homotopy interpretation
3. H-levels
4. Univalence axiom
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Some milestones

1970/80s Martin-Löf’s intensional type theory
1994 Groupoid interpretation by

Hofmann&Streicher
2006 Awodey/Warren: interpretation of Id

in Quillen model categories
2006 Voevodsky’s note on homotopy

λ-calculus
2009 Lumsdaine and van den Berg/Garner:

types are ∞-groupoids
2009 Voevodsky’s univalent foundations

I h-level, equivalence, univalence
I model of MLTT in simplicial sets

2012/13 IAS Special Year on UF

M. Hofmann
(1965–2018)

V.Voevodsky
(1966–2017)
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Intensional Martin-Löf type theory

I Dependently type λ-calculus with
I dependent products Π and dependent sums Σ
I data types N0 (empty type), N1 (unit type), N2 (booleans),

N (natural numbers), . . .
I intensional Martin-Löf identity type Id
I universes U0 : U1,U1 : U2,U2 : U3, . . .

I No axioms (for now), all constants are explained
computationally
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Two notions of “sameness” in type theory

Judgmental equality
u ≡ v : A and A ≡ B

I judgment of type theory
I definitional equality,

unfolding definitions
I In Coq/Agda:

no direct access,
used for computation

vs.
Identity types

IdA(u, v)
I a type
I “propositional” equality
I can appear in

assumptions/context
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Identity types (Martin-Löf)

Formation and introduction rule:

` A u : A v : A
` IdA(u, v)

u : A
reflu : IdA(u, u)

Identity induction:

` A x : A, y : A, z : IdA(x, y) ` C(x, y, z)
d : Π(x : A).C(x, x, reflx)

u : A v : A p : IdA(u, v)
J d u v p : C(u, v, p)
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` IdA(u, v)

u : A
reflu : IdA(u, u)

Identity induction:

` A x : A, y : A, z : IdA(x, y) ` C(x, y, z)
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J d u v p : C(u, v, p)

Definitional equality: J d xx (reflx) ≡ d x : C(x, x, reflx)

7 / 43



Based identity induction (Paulin-Mohring)

Fix a type A and a : A.

x : A, z : IdA(a, x) ` C(x, z)
e : C(a, refl a) u : A p : IdA(a, u)

J′ e u p : C(u, p)

Definitional equality: J′ e a (refl a) ≡ e : C(a, refl a)

Equivalent to identity induction.
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Fix a type A and a : A.

x : A, z : IdA(a, x) ` C(x, z)
e : C(a, refl a) u : A p : IdA(a, u)

J′ e u p : C(u, p)

Definitional equality: J′ e a (refl a) ≡ e : C(a, refl a)

Equivalent to identity induction.

We also write x =A y for IdA(x, y).
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Special case: transport

Given x : A ` B(x) we get

transportx.B : Π(x y : A). x = y → B(x)→ B(y)

with
transport (reflx)u ≡ u : B(x).

Leibniz’ indiscernibility of identicals: “if x is identical to y, then x
and y have all the same properties”
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The identity type is an equivalence relation:
1. reflx : x = x

2. if p : x = y, then p−1 : y = x

3. if p : x = y and q : y = z, then p · q : x = z

Moreover: (reflx)−1 ≡ reflx and (reflx) · q ≡ q
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Congruence

For f : A→ B and p : x =A y have

ap f p : f x =B f y

1. ap f (reflx) ≡ refl(f x)
2. ap (f ◦ g) p = ap f (ap g p)
3. ap id p = p
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Function extensionality?

In mathematics we often want to identify two functions whenever
they are pointwise equal. In type theory this can be formulated as:

Π(A : U)(B : A→ U)(f g : Π(x : A).B x).
(Π(x : A).f x =B x g x)→ f = g

A principle of modularity!

However, this is not derivable and has to be assumed as an axiom.

Voevodsky: function extensionality follows from univalence axiom!

(In BISH one works with setoids instead.)
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Function extensionality?

Intensional MLTT without function extensionality violates the
principle (Russel&Whitehead, PM 2nd ed, 1925) that

[..] a function can only enter into a proposition through
its values.

In MLTT

` C(f) true and x : A ` f x =B g x true

do in general not entail

` C(g) true.

(Take f :≡ λx.x, C(z) :≡ f =N→N z, and g :≡ λx. Sx 0.)
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Structure vs. property?

Using universes and Σ-types we can conveniently encode the type
of types with binary operation as:

BinOp(A) :≡ A×A→ A Bin :≡ Σ(A : U). BinOp(A)

For (A,m) : Bin we can express commutativity of m by:

Law(A,m) :≡ Π(x y : A).m(x, y) =A m(y, x)

and CBin :≡ Σ(A : U)Σ(m : BinOp(A)). Law(A,m).
Proof of commutativity now part of the data: (A,m, p) : CBin
A priori (A,m, p) and (A,m, p′) are different things!

Cure: setoids (Bishop)?
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Structure of Id?

We can iterate the identity type!

u =A v p =u=Av q α =p=u=Avq β . . .

What is this structure and is it interesting?

Uniqueness of Identity Proofs (UIP)?
Does this hierarchy collapse? Are all p =u=Av q are inhabited?

UIP :≡ Π(A : U)Π(x y : A)(p q : x =A y). p = q

In the set-theoretic model of type theory UIP holds.

15 / 43



Structure of Id?

We can iterate the identity type!

u =A v p =u=Av q α =p=u=Avq β . . .

What is this structure and is it interesting?

Uniqueness of Identity Proofs (UIP)?
Does this hierarchy collapse? Are all p =u=Av q are inhabited?

UIP :≡ Π(A : U)Π(x y : A)(p q : x =A y). p = q

In the set-theoretic model of type theory UIP holds.

Answer here: understand this structure via homotopy theory!
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Groupoid model (Hofmann/Streicher 1994)

Hofmann and Streicher note that Id-types satisfy the groupoid laws
up to an Id-equality. Write 1x :≡ reflx and let p : x =A y.
I p · 1y = p and 1x · p = p

I p · p−1 = 1x and p−1 · p = 1y
I (p · q) · r = p · (q · r)

Groupoid model
Each (closed) type A interpreted as a groupoid and IdA(a, b) has
as objects the morphisms a→ b in A

Z/2Z considered as a groupoid gives counter-example to UIP!

A predecessor of the homotopy interpretation of identity types.
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Types are weak ∞-groupoids (∼2009)

A generalization of the observation that types induce groupoids
(up to paths).

Lumsdaine and van den Berg/Garner: the iterated Id-types give
rise to the structure of ∞-groupoids!

A u =A v p =u=Av q α =p=u=Avq β . . .

0-cells 1-cells 2-cells 3-cells . . .
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Classical homotopy theory

I Let I := [0, 1] and f, g : X → Y be two continuous maps
between topological spaces X and Y . A homotopy between f
and g is a continuous map H : X × [0, 1]→ Y with:{

H(x, 0) = f(x)
H(x, 1) = g(x)

Write f 'H g.
I X ' Y (for spaces X and Y ) if we have f : X → Y and
g : Y → X such that g ◦ f 'H1 idX and f ◦ g 'H2 idY for
suitable homotopies H1 and H2.
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Homotopy interpretation of type theory

Paths and higher paths in a space X give rise to its so-called
fundamental ∞-groupoid.

u ∈ X p : I→ X α : I× I→ X θ : I× I× I→ X . . .
u 'p v p 'α q α 'θ β

points paths 2-paths 3-paths

I Voevodsky (2006/2009): model of type theory in simplicial
sets (combinatorial representation of spaces)

I Awodey/Warren (2006): interpretation of Id-types in model
structures (abstract framework for homotopy theory)

Changes our idea what kind of objects type theory is about!
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Hofmann & Streicher (1998) already were wondering about this:
This, however, would require “2-level groupoids” in which
we have morphisms between morphisms and accordingly
the identity sets are not necessarily discrete. We do
not know whether such structures (or even infinite-level
generalisations therof) can be sensibly organised into a
model of type theory.
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Spaces as types

Types Logic Homotopy
A proposition space
a : A proof point
x : A ` B(x) predicate of sets fibration
x : A ` b(x) : B(x) conditional proof section
N0,N1 ⊥,> ∅, {∗}
A+B A ∨B coproduct
A×B A ∧B product space
A→ B A⇒ B function space
Σ(x : A)B(x) ∃(x : A)B(x) total space
Π(x : A)B(x) ∀(x : A)B(x) space of sections
IdA equality = path space AI
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From the HoTT Book (p.75)
An important difference between homotopy type theory
and classical homotopy theory is that homotopy type the-
ory provides a synthetic description of spaces, in the fol-
lowing sense. Synthetic geometry is geometry in the style
of Euclid: one starts from some basic notion (points and
lines), constructions (a line connecting any two points),
and axioms (all right angles are equal), and deduces con-
sequences logically. This is in contrast with analytic ge-
ometry, where notions such as points and lines are repre-
sented concretely using cartesian coordinates in Rn—lines
are sets of points—and the basic constructions and ax-
ioms are derived from this representation. While classical
homotopy theory is analytic (spaces and paths are made of
points), homotopy type theory is synthetic: points, paths,
and paths between paths are basic, indivisible, primitive
notions.
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Propositions

Let us first look at types which are homotopically rather boring.

We call types which are “subsingletons” (h-)propositions:

isProp(A) :≡ Π(x y : A). x =A y

Not to be confused with “propositions” from the
propositions-as-types interpretation.

Example
isProp(N0) and isProp(N1),
but ¬ isProp(N) since 0 6= 1 (why?)
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Sets

Slightly more interesting are sets:

isSet(A) :≡ Π(x y : A)(p q : x =A y). p = q

so isSet(A) is Π(x y : A). isProp(x =A y).

Uniqueness of Identity Proofs simply states that any type is a set!
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How is a type a set?

1. Given x : A and f : Π(y : A).x = y → x = y, then for y : A
and p : x = y

p = (f x 1)−1 · (f y p)

by (based) identity induction and 1 = (f x 1)−1 · (f x 1)
2. For g : A→ B define: const(g) :≡ Π(x y : A). g x =B g y

3. If we additionally know Π(y : A). const(f y) in (1), then A is
a set: for p, q : x =A y:

p = (f x 1)−1 · (f y p) = (f x 1)−1 · (f y q) = q

Theorem
Any proposition is a set.

Proof.
Given α : isProp(A) we can set f y p :≡ αx y in the above.
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Hedberg’s theorem
A type A is decidable if:

dec(A) :≡ A+ ¬A

Theorem (Hedberg 1995)
If A has decidable equality, i.e., we have Π(x y : A). dec(x = y),
then A is a set.

Proof.
To built f y : x = y → x = y by distinguishing cases
x = y + ¬(x = y). In case x = y use this element for f y p.
Otherwise, if ¬(x = y), we get a contradiction from assuming
x = y. In both cases we have const(f y).

Corollary
isSet(N2), isSet(N).
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Assuming function extensionality we can prove that being a
property or set is itself a property:
1. isProp(isProp(A))
2. isProp(isSet(A))

We can fix our type of types with a commutative operation to:

Σ(A : U)(α : isSet(A))(m : A×A→ A).
Π(x y : A).m(x, y) = m(y, x)

Any two proofs of Π(x y : A).m(x, y) = m(y, x) are then equal!
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Contractibility

A special role is played by contractible types:

isContr(A) :≡ Σ(x : A)Π(y : A). x =A y

Example
For a : A define singl(a) ≡ Σ(x : A).a = x. Then:

isContr(singl(a))

Prove for all x : A and p : a = x that (a, 1a) = (x, p) by induction
on p.
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From an interview with Jean-Pierre Serre, 2003:
[T]o apply Leray’s theory I needed to construct fibre spaces
which did not exist if one used the standard definition.
Namely, for every space X, I needed a fibre space E
with base X and with trivial homotopy (for instance, con-
tractible). But how to get such a space?
One night in 1950, on the train bringing me back from our
summer vacation, I saw it in a flash: just take for E the
space of paths on X (with fixed origin a), the projection
E → X being the evaluation map: path 7→ extremity of
the path. The fibre is then the loop space of (X, a). I had
no doubt: this was it! So much so that I even woke up
my wife to tell her. . . [..] It is strange that such a simple
construction had so many consequences.

Loop space Ω(X, a) in type theory: a =X a
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Homotopy levels

One of Voevodsky’s main contributions to type theory!

h-levelnA expresses that homotopy-level of a type A is n:

h-level 0A ≡ isContr(A)
h-level (n+ 1)A ≡ Π(x y : A). h-leveln (x =A y)

h-level
0 contractible N1
1 proposition N0, N1
2 set N,N2
3 groupoids
4 2-groupoids
. . .

Warning: HoTT book
uses n-types, n ≥ −2:

is-n-typeA ≡
h-level (n+ 2)A
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Homotopy equivalences (Voevodsky)

1. Let f : A→ B.
2. For y : B define fibf (y) :≡ Σ(x : A).f x = y

3. f is an equivalence if it has contractible fibers:

isEquiv(f) :≡ Π(y : B). isContr(fibf (y))

4. A ' B iff Σ(f : A→ B). isEquiv(f)
5. isEquiv(idA) like isContr(singl(a))
6. Type of quasi-inverses of f denoted qinv(f):

Σ(g : B → A).(Π(x : A). g(f x) = x)× (Π(y : B). f(g y) = y)

7. qinv(f)↔ isEquiv(f)
8. Assuming function extensionality: isProp(isEquiv(f))
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The univalence axiom

The univalence axiom specifies what the equality for universes
should be.

Define

idToEquivU : Π(A B : U).A =U B → A ' B

by path induction, mapping reflA to idA proving A ' A.

Univalence axiom (Voevodsky)

Π(A B : U). isEquiv(idToEquivUAB)
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1. The univalence axiom is a statement about a universe U

UAU Π(A B : U). isEquiv(idToEquivUAB)

2. (A =U B) ' (A ' B)
3. UA implies function extensionality! (Voevodsky)
4. UA implies

ua : Π(AB : U). A ' B → A =U B “naive univalence”
uaβ : Π(AB : U)(f : A ' B)(x : A). “computation” rule

transportλ(X:U).X(ua f)x = f x

5. ua and uaβ also imply UA (Licata)
6. Open problem: does “naive univalence” already imply UA?
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UA and UIP?

Univalence is incompatible with uniqueness of identity proofs.
1. Define swap : N2 → N2 by:

swap(true) = false swap(false) = true

2. swap is its own quasi-inverse, thus an equivalence;
3. by UA we get: ua swap : N2 =U N2;
4. we know: transport (ua swap) true = swap true ≡ false,
5. but: transport 1N2 true ≡ true,
6. so: ua swap 6=N2=UN2 1N2 and hence ¬ isSet(U).

34 / 43



Sharpening of ¬ isSet(U)

Theorem (Kraus/Sattler)
Given a hierarchy of univalent universes U0,U1,U2, . . .

U0 : U1 U1 : U2 U2 : U3 . . .

we have
¬(h-level (n+ 2) Un).
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Special cases of univalence

1. If A,B : U are propositions (so have isProp(A) and
isProp(B)), then:

(A↔ B)→ A ' B

So UA implies propositional extensionality:

(A↔ B)→ A = B

2. If A and B are sets, equivalence specializes to
bijection/isomorphism between sets.

3. If A and B are groupoids, equivalence specializes to
categorical equivalence.
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Equality of structures

Recall example of type CBin of types with a commutative
operation:

Σ(A : U)(α : isSet(A))(m : A×A→ A)Π(x y : A).m(x, y) = m(y, x)

Given A′ = (A,αA,mA, pA) and B′ = (B,αB,mB, pB) there is an
obvious candidate of homomorphism:

f : A→ B such that f(mA(x, y)) = mB(f x, f y)

Univalence lifts to isomorphisms of this algebraic structure:

(A′ ∼= B′) ' (A′ = B′)

This works for many other algebraic structures (Aczel,
Coquand/Danielsson)
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Independence of UA

Voevodsky gave a model of UA using Kan simplicial sets
formulated in a classical meta-theory (ZFC plus two inaccessible
cardinals).

(Various constructive models based on cubical sets; more later. . . )

(Since the set-theoretic model is not a model of UA we know that
UA is independent of intensional MLTT.)

So MLTT can’t distinguish equivalent types:
Given P : U→ U and A,B : U with A ' B, we can’t have P A
but ¬(P B).

In contrast to set theory: {0} ∼= {1} and 0 ∈ {0}, but 0 /∈ {1}.
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Summary

I Intensional MLTT lacks extensionality principles
I Iterating Martin-Löf’s identity type gives rise to interesting

structure
I Types as spaces, spaces as types. Changes our idea what this

theory is a theory of! (Not necessarily sets!)
I Types can be stratified by their h-level
I The univalence axiom is a strong extensionality principle.

Type theory invariant under equivalence.
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Propositional truncation

I When is f : A→ B surjective?

Π(y : B)Σ(x : A). f x = y

I Given a type A its propositional truncation is a proposition
‖A‖ with inc : A→ ‖A‖, such that for any other type B with
isProp(B) there is a map

rec : (A→ B)→ ‖A‖ → B

with: rec f (inc a) ≡ f a : B
I If A is a proposition, then A↔ ‖A‖, so A ' ‖A‖, so
A = ‖A‖.

I ‖A‖ expresses that A is inhabited, but we can’t extract its
witness in general
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The logic of h-propositions

We can define surjective as:

Π(y : B) ‖Σ(x : A). f x = y‖

This suggest a interpretation of the logical connectives as
(h-)propositions

> ≡ N1
⊥ ≡ N0

A⇒ B ≡ A→ B
A ∧B ≡ A×B
A ∨B ≡ ‖A+B‖

∀(x : A)B ≡ Π(x : A)B
∃(x : A)B ≡ ‖Σ(x : A)B‖

This interpretation satisfies all the expected properties from logic.
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Propositional truncation

What kind of type former is ‖−‖?

a : A
inc a : ‖A‖

u : ‖A‖ v : ‖A‖
squashu v : Id‖A‖(u, v)

Has constructors for points and paths! (From the recursor one can
derive a suitable induction principle.)

Compare: inductive types specified by point constructors

0 : N
n : N

Sn : N

Propositional truncation is a higher inductive type (HIT).
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