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Univalent Foundations

» Vladimir Voevodsky formulated the Univalence Axiom (UA) in
Martin-Lof Type Theory as a strong form of the Axiom of
Extensionality.

» UA is classically justified by the interpretation of types as Kan
simplicial sets

» However, this justification uses non-constructive steps. Hence
this does not provide a way to compute with univalence.

» Goal: give a model of univalence in a constructive metatheory.
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A Category of Names and Substitutions

We define the category of names and substitutions C as follows.
Fix a countable set of names x, y, z, ... distinct from 0, 1.

C is given by:
» objects are finite (decidable) sets of names I, J, K, ...

> a morphism f: [ — J is given by a set map
f:l—Ju{o,1}

such that if f(x),f(y) € J, then f(x) = f(y) implies x = y
(f is injective on its defined elements.)

This represents a substitution: assign values 0 or 1 to
variables or rename them.



A Category of Names and Substitutions

» Composition of f: I — J and g: J — K defined by

(gof)(x)= {g(fx) f defined on x,

fx otherwise;

We write fg for go f.

» For each | we assume a selected fresh name x; ¢ /.



Cubical Sets

Definition
A cubical set X is a functor X: C — Set.

So a cubical set X is given by sets X(/) for each I/, and maps
X(1) = X(J), ar af for f: | — J with

al=a and (af)g = a(fg).

Call an element of X(/) and /-cube.



Cubical Sets

Remark
» Kan's original approach (1955) to combinatorial homotopy
theory used cubical sets
» Close to the presentation of cubical sets as in Crans’ thesis

» Our notion is equivalent to nominal sets with 01-substitions
(Pitts, Staton)



Cubical Sets

Think of names x as a name for a “dimension” and
» X(0) as points,
{x}) as lines in dimension x,

» X(
» X({x,y}) as squares in the dimensions x, y,
» X({x,y,z}) as cubes,

>



Cubical Sets: Faces

For x € I the maps (x =0),(x =1): | — | — x sending x to 0 and
1 respectively are called the face map.

An [-cube 6 of X connects its two faces 6(x = 0) and §(x = 1):



Cubical Sets: Degeneracies

f: I — Jis a degeneracy map if f is defined on all elements in /
and J has more elements than /.

If x ¢ I, consider the inclusion (x): I — /,x. We have
(x)(x =0) =1= (x)(x =1), and so for an /-cube « of X:

If B = a(x) is such a degenerate /, x-cube, we can think of 3 to be
independent of the dimension x.



Cubical Sets as a Category with Families

Cubical sets form (as any presheaf category) a model of type
theory:

> The category of contexts I' - and substitutions o: A — T is
the category of cubical sets.

» Types [ = A are given by

A« a set, forael(l),l €C,
Aa — Aaf a map, forf: 1 — JinC,
a— af

such that al = a, (af)g = a(fg).

» Terms [ t: A are given by ta € Aa such that
(ta)f = t(af).



Cubical Sets as a Category with Families

» For I A the context extension [.A |- is defined as

(a,a) € (TA)(I) iff « €T(/) and a € Aa,
(o, a)f = (af, af).

We can define the projections p: LA — T and A q: Ap by

p(av a) =a,

q(a, a) = a.

This gives a model of 1 and X but will not get us the identity type
we want!



|dentity Types

The degeneracy operations give us a natural interpretation of the
identity type ' 1dg abforTFa:AandTF b: A:
For a € T'(/) we define w € (Ida a b)« if

w € Aa(x) s.t. w(x; =0) = ac and w(x; = 1) = ba.

(Recall: x; is a fresh name; x; ¢ 1)
We can extend f: | — J to (f,x; = xy): I, x; — J, xy, and define
the map (lda a b)a — (lda a b)af by

wf =gef W(f,x1 = x;) € Aaf(x)).



|dentity Types

This immediately justifies the introduction rule

NlFa: A
' Refa:lds a a

by setting (Refa)a = a a(x).

But the elimination rule is not justified! We have to strengthen our
notion of types!



Kan condition, classically

Classically, the Kan condition can be stated as:

any open box can be filled



Effectivity Problems

There are two main effectivity problems with the Kan condition:

» Closure of the Kan condition under exponentiation seems to
essentially use decidability of degeneracy.
» A Kripke counter-model shows that Kan fibrations need not

have equivalent fibres in a constructive setting (M. Bezem &
T. Coquand).

So we have to refine this notion!



Kan condition, revisited

Let X be a cubical set; we first define the notion of an open box.
Let J,x C [ with x ¢ J. Set

07 (J.x) ={(x.0)} U{(y.c) | y e JAc {0, 1}}.
An open box i is given by uy,. € X(I —y) for (y,c) € Ot (J,x) s.t.
uye(z=d) = uzg(y = c) for (y,c),(z,d) € OT(J,x),y # z

(Similar: boxes given by O~ (J, x) which contains (x, 1) instead of

(x,0))



Open Box

For example, a box & = uxo, Uyg, uy1 has the shape:

Note that 4 may also depend on other variables (i.e., may consist
of higher cubes).



The Uniform Kan Condition

X is constructive Kan cubical set if we have operations X7 such
that for any open box i in X (/) indexed by O"(J, x) (where
J,x C 1) we have fillers

Xt € X(I)
such that for (y,c) € O (J,x)
(X10)(y =€) = uye
and (!) for f: I — K defined on J, x
(Xta)f = X1(d f)

where if is the open box given by the u,.(f —y) € X(K — fy)
where (f —y): I —y — K — fy.



The Uniform Kan Condition

(Similarly, we require X operations for O~ -indexed open boxes.)

We set
X*ii = (X1d)(x = 1),
X" u=(Xlo)(x=0).
Example:
Xti
uyo XTu uy1

Uxo



The Uniform Kan Condition

Similar operations were already considered in an approach using
semi-simplicial sets (B. Barras, T. Coquand, SH).

In a classical metatheory, the uniform Kan condition follows from
the ordinary Kan condition.

Theorem
If a Kan cubical set X has decidable degeneracies, it also has the
uniform Kan operations.



Constructive Kan Fibrations

A type [ = Ais a (constructive) Kan fibration if for all a € (/) we
have operations

Aatid € Aa  for open boxes U

where uy. € Aa(y = ¢),(y,c) € O1(J, x) such that
(Aatd)(y = ¢) = uyc and for f: | — K defined on J, x

(Aatd)f = (Aaf)1H(T f).

(Similarly we require operations Aa.li.)



Model of Type Theory

By restricting types [ - A to constructive Kan fibrations, we get
an effective model of type theory.

Theorem
Constructive Kan fibrations are closed under -, - and |d-types.

Adding this extra conditions solves the effectivity problem!



|dentity Type (cont.)

Theorem
IfT.AF P is Kan fibration, then there is a term J s.t.

A Tka:A TEb ThEp:ldaab THu:Pla

= J(p,u): P[b]

Proof.
Let « be an I-cube of T'; then pa connects ac and b in
dimension x with x ¢ /. So we get an /, x-cube in . A:

(af

[a]o 120022 11,

We define J(p, u)a = P(a(x), pa)t(ua).

OJ



|dentity Type (cont.)

Note that we have a line:

o P(a(x),pa)t(ua) 1(p, v)a

In particular, if p = Refa this gives a term of
M ldppa u (J(Refa, u)). (1)

One can also show that the singleton type x : Alda a x is
contractible.

This suffices to develop basic properties of univalent mathematics
(N.A. Danielsson).

(To get (1) as definitional equality J(Refa, u) = u one has to
consider regular fibrations.)



Kan Completion

We can “complete” any cubical set X to a Kan cubical set X.

Add operations X+, X1, X/, X~ in a free way, i.e., by considering
these operations as constructors.

The uniformity conditions determine how a morphism acts on the
new constructors.

This defines a Kan cubical set such that for any morphism X — Y
with Y Kan can be extended to X' — Y.



The Circle St

St is the Kan completion of the cubical set generated by a point
base and a line loop connecting base to base.

For a type S’ - P with  a: P base and I /: P loop we can
define S' - E : P satisfying

E base = a and E loop = /.



Propositional Reflection

For a Kan cubical set X we define inh(X).
inh(X) is a h-proposition that states that X is inhabited.

To X we add a constructor ay(ap, a1) for an /I, x-cube (x ¢ /) for
I-cubes ag, a; and set

ax(ag,a1)(x = d) = a4 ford =0,1
(ax(ao, a1))f = anlao(f — x),a1(f —x)) f def. on x

Additionally we have constructors for the Kan operations, and get
a Kan cubical set inh(X) as before.

If Y is a h-proposition, then X — Y gives inh(X) — Y.



Universe

The universe U of Kan cubical sets is intuitively as follows:
» points of U are (small) Kan cubical sets

> aline in U between A and B can be seen as a “heterogeneous”
notion of lines, cubes, ..., a — b where a and b are /-cubes
of A and B respectively, where we can fill all open boxes



Universe

More formally, A € U(/) is given by
> a family of (small) sets Ar with f: [ — J;
» maps Af — Ag, arr ag if g: J — K, satisfying al = a and
(ag)h = a(gh);
» operations AfT, Arl analogous to the uniform Kan fillings,

e.g., Artd € Ar if aye € Af(y—¢) for (v, c) € OF(K, x),
K,x C J, is an open box.

This defines a cubical set (with (Af); = Ag).



Equivalence of Types

A map o: A — B between to Kan cubical sets A and B is an
equivalence if there is a map 6: B — A and a map odb — b and a
transformation of any equality w: 0a — b (where a and b are

I-cubes of A and B resp.) to a I, x-cube in A and an /, x, y-cube
in B:

w*

a———0b

.
ca—2 > g6b



From Equivalence to Equality of Types

We can transform an equivalence o: A — B into a line C in U(x)
between A and B. Define the sets Cr for f: {x} — I as follows.

» If ix =0, set CGr = A(/).
» If ix =1, set Cr = B(!).

> If f is defined on x, fx = y, we set Cr to consist of pairs
(a, b) where

ac€A(l —y)and be B(l)s.t. b(y =0) =oca.

From the fact that o is an equivalence one can check elementary
that C has the uniform Kan properties.



Conclusion and Further Work

» Cubical sets are suitable for modeling type theory, especially
Id-types

» The uniform Kan condition gives a well-behaved notion in a
constructive setting; all results are concrete and effective

» We only checked a weak corollary of the Axiom of Univalence
but we expect Univalence to hold in the model

» Close connections to nominal sets (Pitts) and internal
parametricity (Bernardy, Moulin); should give rise to an
implementation

» Connections to other work on cubical sets?



Thank you!



