A Model of Type Theory in Cubical Sets

Simon Huber
(j.w.w. Marc Bezem and Thierry Coquand)
University of Gothenburg

Barcelona, 23. September 2013

Univalent Foundations

- Vladimir Voevodsky formulated the Univalence Axiom (UA) in Martin-Löf Type Theory as a strong form of the Axiom of Extensionality.
- UA is classically justified by the interpretation of types as Kan simplicial sets
- However, this justification uses non-constructive steps. Hence this does not provide a way to compute with univalence.
- Goal: give a model of univalence in a constructive metatheory.

Outline

1. Cubical Sets
2. Constructive Kan Cubical Sets
3. Kan completion, Spheres, Propositional Reflection
4. Universe

A Category of Names and Substitutions

We define the category of names and substitutions \mathcal{C} as follows.
Fix a countable set of names x, y, z, \ldots distinct from 0,1 .
\mathcal{C} is given by:

- objects are finite (decidable) sets of names I, J, K, \ldots
- a morphism $f: I \rightarrow J$ is given by a set map

$$
f: I \rightarrow J \cup\{0,1\}
$$

such that if $f(x), f(y) \in J$, then $f(x)=f(y)$ implies $x=y$ (f is injective on its defined elements.)
This represents a substitution: assign values 0 or 1 to variables or rename them.

A Category of Names and Substitutions

- Composition of $f: I \rightarrow J$ and $g: J \rightarrow K$ defined by

$$
(g \circ f)(x)= \begin{cases}g(f x) & f \text { defined on } x \\ f x & \text { otherwise }\end{cases}
$$

We write $f g$ for $g \circ f$.

- For each I we assume a selected fresh name $x_{I} \notin I$.

Cubical Sets

Definition

A cubical set X is a functor $X: \mathcal{C} \rightarrow$ Set.
So a cubical set X is given by sets $X(I)$ for each I, and maps $X(I) \rightarrow X(J)$, $a \mapsto$ af for $f: I \rightarrow J$ with

$$
a 1=a \quad \text { and } \quad(a f) g=a(f g)
$$

Call an element of $X(I)$ and I-cube.

Cubical Sets

Remark

- Kan's original approach (1955) to combinatorial homotopy theory used cubical sets
- Close to the presentation of cubical sets as in Crans' thesis
- Our notion is equivalent to nominal sets with 01-substitions (Pitts, Staton)

Cubical Sets

Think of names x as a name for a "dimension" and

- $X(\emptyset)$ as points,
- $X(\{x\})$ as lines in dimension x,
- $X(\{x, y\})$ as squares in the dimensions x, y,
- $X(\{x, y, z\})$ as cubes,

Cubical Sets: Faces

For $x \in I$ the maps $(x=0),(x=1): I \rightarrow I-x$ sending x to 0 and 1 respectively are called the face map.

An I-cube θ of X connects its two faces $\theta(x=0)$ and $\theta(x=1)$:

$$
\theta(x=0) \xrightarrow[x]{\theta} \theta(x=1)
$$

Cubical Sets: Degeneracies

$f: I \rightarrow J$ is a degeneracy map if f is defined on all elements in I and J has more elements than I.

If $x \notin I$, consider the inclusion $(x): I \rightarrow I, x$. We have $(x)(x=0)=1=(x)(x=1)$, and so for an I-cube α of X :

$$
\alpha \xrightarrow[x]{ } \quad \alpha
$$

If $\beta=\alpha(x)$ is such a degenerate I, x-cube, we can think of β to be independent of the dimension x.

Cubical Sets as a Category with Families

Cubical sets form (as any presheaf category) a model of type theory:

- The category of contexts $\Gamma \vdash$ and substitutions $\sigma: \Delta \rightarrow \Gamma$ is the category of cubical sets.
- Types $\Gamma \vdash A$ are given by

$$
\begin{array}{ll}
A \alpha \text { a set, } & \text { for } \alpha \in \Gamma(I), I \in \mathcal{C}, \\
A \alpha \rightarrow A \alpha f \text { a map, } & \text { for } f: I \rightarrow J \text { in } \mathcal{C}, \\
a \mapsto a f &
\end{array}
$$

such that $a 1=a$, $(a f) g=a(f g)$.

- Terms $\Gamma \vdash t: A$ are given by $t \alpha \in A \alpha$ such that $(t \alpha) f=t(\alpha f)$.

Cubical Sets as a Category with Families

- For $\Gamma \vdash A$ the context extension $\Gamma . A \vdash$ is defined as

$$
\begin{gathered}
(\alpha, a) \in(\Gamma . A)(I) \text { iff } \alpha \in \Gamma(I) \text { and } a \in A \alpha, \\
(\alpha, a) f=(\alpha f, a f) .
\end{gathered}
$$

We can define the projections $\mathrm{p}: \Gamma . A \rightarrow \Gamma$ and $\Gamma . A \vdash \mathrm{q}: A \mathrm{p}$ by

$$
\begin{aligned}
& \mathrm{p}(\alpha, a)=\alpha, \\
& \mathrm{q}(\alpha, a)=a .
\end{aligned}
$$

This gives a model of Π and Σ but will not get us the identity type we want!

Identity Types

The degeneracy operations give us a natural interpretation of the identity type $\Gamma \vdash \operatorname{Id}_{A} a b$ for $\Gamma \vdash a: A$ and $\Gamma \vdash b: A$:
For $\alpha \in \Gamma(I)$ we define $\omega \in\left(\operatorname{ld}_{A} a b\right) \alpha$ if

$$
\omega \in A \alpha\left(x_{l}\right) \text { s.t. } \omega\left(x_{I}=0\right)=a \alpha \text { and } \omega\left(x_{I}=1\right)=b \alpha .
$$

(Recall: x_{I} is a fresh name; $x_{I} \notin I$)
We can extend $f: I \rightarrow J$ to $\left(f, x_{I}=x_{J}\right): I, x_{I} \rightarrow J, x_{J}$, and define the map $\left(\operatorname{ld}_{A} a b\right) \alpha \rightarrow\left(\operatorname{ld}_{A} a b\right) \alpha f$ by

$$
\omega f={ }_{\operatorname{def}} \omega\left(f, x_{I}=x_{J}\right) \quad \in A \alpha f\left(x_{J}\right)
$$

Identity Types

This immediately justifies the introduction rule

$$
\frac{\Gamma \vdash a: A}{\Gamma \vdash \operatorname{Ref} a: \operatorname{Id}_{A} a a}
$$

by setting (Refa) $\alpha=a \quad \alpha\left(x_{l}\right)$.
But the elimination rule is not justified! We have to strengthen our notion of types!

Kan condition, classically

Classically, the Kan condition can be stated as: any open box can be filled

Effectivity Problems

There are two main effectivity problems with the Kan condition:

- Closure of the Kan condition under exponentiation seems to essentially use decidability of degeneracy.
- A Kripke counter-model shows that Kan fibrations need not have equivalent fibres in a constructive setting (M. Bezem \& T. Coquand).

So we have to refine this notion!

Kan condition, revisited

Let X be a cubical set; we first define the notion of an open box. Let $J, x \subseteq I$ with $x \notin J$. Set

$$
O^{+}(J, x)=\{(x, 0)\} \cup\{(y, c) \mid y \in J \wedge c \in\{0,1\}\} .
$$

An open box \vec{u} is given by $u_{y c} \in X(I-y)$ for $(y, c) \in O^{+}(J, x)$ s.t.

$$
u_{y c}(z=d)=u_{z d}(y=c) \quad \text { for }(y, c),(z, d) \in O^{+}(J, x), y \neq z
$$

(Similar: boxes given by $O^{-}(J, x)$ which contains $(x, 1)$ instead of $(x, 0)$)

Open Box

For example, a box $\vec{u}=u_{x 0}, u_{y 0}, u_{y 1}$ has the shape:

Note that \vec{u} may also depend on other variables (i.e., may consist of higher cubes).

The Uniform Kan Condition

X is constructive Kan cubical set if we have operations $X \uparrow$ such that for any open box \vec{u} in $X(I)$ indexed by $O^{+}(J, x)$ (where $J, x \subseteq I$) we have fillers

$$
X \uparrow \vec{u} \in X(I)
$$

such that for $(y, c) \in O^{+}(J, x)$

$$
(X \uparrow \vec{u})(y=c)=u_{y c}
$$

and (!) for $f: I \rightarrow K$ defined on J, x

$$
(X \uparrow \vec{u}) f=X \uparrow(\vec{u} f)
$$

where $\vec{u} f$ is the open box given by the $u_{y c}(f-y) \in X(K-f y)$ where $(f-y): I-y \rightarrow K-f y$.

The Uniform Kan Condition

(Similarly, we require $X \downarrow$ operations for O^{-}-indexed open boxes.)

We set

$$
\begin{aligned}
& X^{+} \vec{u}=(X \uparrow \vec{u})(x=1), \\
& X^{-} \vec{u}=(X \downarrow \vec{u})(x=0) .
\end{aligned}
$$

Example:

The Uniform Kan Condition

Similar operations were already considered in an approach using semi-simplicial sets (B. Barras, T. Coquand, SH).

In a classical metatheory, the uniform Kan condition follows from the ordinary Kan condition.

Theorem
If a Kan cubical set X has decidable degeneracies, it also has the uniform Kan operations.

Constructive Kan Fibrations

A type $\Gamma \vdash A$ is a (constructive) Kan fibration if for all $\alpha \in \Gamma(I)$ we have operations

$$
A \alpha \uparrow \vec{u} \in A \alpha \quad \text { for open boxes } \vec{u}
$$

where $u_{y c} \in A \alpha(y=c),(y, c) \in O^{+}(J, x)$ such that $(A \alpha \uparrow \vec{u})(y=c)=u_{y c}$ and for $f: I \rightarrow K$ defined on J, x

$$
(A \alpha \uparrow \vec{u}) f=(A \alpha f) \uparrow(\vec{u} f)
$$

(Similarly we require operations $A \alpha \downarrow \vec{u}$.)

Model of Type Theory

By restricting types $\Gamma \vdash A$ to constructive Kan fibrations, we get an effective model of type theory.

Theorem
Constructive Kan fibrations are closed under П-, Σ - and Id-types.

Adding this extra conditions solves the effectivity problem!

Identity Type (cont.)

Theorem
If $\Gamma . A \vdash P$ is Kan fibration, then there is a term J s.t.

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash a: A \quad \Gamma \vdash b \quad \Gamma \vdash p: \operatorname{ld}_{A} \text { a } b \quad \Gamma \vdash u: P[a]}{\Gamma \vdash J(p, u): P[b]}
$$

Proof.
Let α be an I-cube of Γ; then $p \alpha$ connects $a \alpha$ and $b \alpha$ in dimension x with $x \notin I$. So we get an I, x-cube in Г. A :

$$
[a] \alpha \xrightarrow[x]{(\alpha(x), p \alpha)}[b] \alpha
$$

We define $\mathrm{J}(p, u) \alpha=P(\alpha(x), p \alpha)^{+}(u \alpha)$.

Identity Type (cont.)

Note that we have a line:

$$
u \alpha \xrightarrow{P(\alpha(x), p \alpha) \uparrow(u \alpha)} \mathrm{J}(p, u) \alpha
$$

In particular, if $p=$ Refa this gives a term of

$$
\begin{equation*}
\Gamma \vdash \operatorname{Id}_{P[a]} u(\mathrm{~J}(\operatorname{Ref} a, u)) . \tag{1}
\end{equation*}
$$

One can also show that the singleton type $\Sigma x: A \operatorname{ld}_{A} a x$ is contractible.
This suffices to develop basic properties of univalent mathematics (N.A. Danielsson).
(To get (1) as definitional equality $\mathrm{J}(\operatorname{Ref} a, u)=u$ one has to consider regular fibrations.)

Kan Completion

We can "complete" any cubical set X to a Kan cubical set X^{\prime}.
Add operations $X^{+}, X \uparrow, X \downarrow, X^{-}$in a free way, i.e., by considering these operations as constructors.

The uniformity conditions determine how a morphism acts on the new constructors.

This defines a Kan cubical set such that for any morphism $X \rightarrow Y$ with Y Kan can be extended to $X^{\prime} \rightarrow Y$.

The Circle S^{1}

S^{1} is the Kan completion of the cubical set generated by a point base and a line loop connecting base to base.

For a type $S^{1} \vdash P$ with $\vdash a: P$ base and $\vdash I: P$ loop we can define $S^{1} \vdash E: P$ satisfying

$$
E \text { base }=a \quad \text { and } \quad E \text { loop }=I .
$$

Propositional Reflection

For a Kan cubical set X we define $\operatorname{inh}(X)$.
$\operatorname{inh}(X)$ is a h-proposition that states that X is inhabited.
To X we add a constructor $\alpha_{x}\left(a_{0}, a_{1}\right)$ for an I, x-cube $(x \notin I)$ for I-cubes a_{0}, a_{1} and set

$$
\begin{aligned}
\alpha_{x}\left(a_{0}, a_{1}\right)(x=d) & =a_{d} & & \text { for } d=0,1 \\
\left(\alpha_{x}\left(a_{0}, a_{1}\right)\right) f & =\alpha_{f x}\left(a_{0}(f-x), a_{1}(f-x)\right) & & f \text { def. on } x
\end{aligned}
$$

Additionally we have constructors for the Kan operations, and get a Kan cubical set $\operatorname{inh}(X)$ as before.

If Y is a h-proposition, then $X \rightarrow Y$ gives $\operatorname{inh}(X) \rightarrow Y$.

Universe

The universe U of Kan cubical sets is intuitively as follows:

- points of U are (small) Kan cubical sets
- a line in U between A and B can be seen as a "heterogeneous" notion of lines, cubes, $\ldots, a \rightarrow b$ where a and b are l-cubes of A and B respectively, where we can fill all open boxes

Universe

More formally, $A \in U(I)$ is given by

- a family of (small) sets A_{f} with $f: I \rightarrow J$;
- maps $A_{f} \rightarrow A_{f g}, a \mapsto a g$ if $g: J \rightarrow K$, satisfying $a 1=a$ and $(a g) h=a(g h)$;
- operations $A_{f} \uparrow, A_{f} \downarrow$ analogous to the uniform Kan fillings, e.g., $A_{f} \uparrow \vec{a} \in A_{f}$ if $a_{y c} \in A_{f(y=c)}$ for $(y, c) \in O^{+}(K, x)$, $K, x \subseteq J$, is an open box.
This defines a cubical set (with $\left.(A f)_{g}=A_{f g}\right)$.

Equivalence of Types

A map $\sigma: A \rightarrow B$ between to Kan cubical sets A and B is an equivalence if there is a map $\delta: B \rightarrow A$ and a map $\sigma \delta b \rightarrow b$ and a transformation of any equality $\omega: \sigma a \rightarrow b$ (where a and b are I-cubes of A and B resp.) to a I, x-cube in A and an I, x, y-cube in B :

From Equivalence to Equality of Types

We can transform an equivalence $\sigma: A \rightarrow B$ into a line C in $U(x)$ between A and B. Define the sets C_{f} for $f:\{x\} \rightarrow I$ as follows.

- If $f x=0$, set $C_{f}=A(I)$.
- If $f x=1$, set $C_{f}=B(I)$.
- If f is defined on $x, f x=y$, we set C_{f} to consist of pairs
(a, b) where

$$
a \in A(I-y) \text { and } b \in B(I) \text { s.t. } b(y=0)=\sigma a .
$$

From the fact that σ is an equivalence one can check elementary that C has the uniform Kan properties.

Conclusion and Further Work

- Cubical sets are suitable for modeling type theory, especially Id-types
- The uniform Kan condition gives a well-behaved notion in a constructive setting; all results are concrete and effective
- We only checked a weak corollary of the Axiom of Univalence but we expect Univalence to hold in the model
- Close connections to nominal sets (Pitts) and internal parametricity (Bernardy, Moulin); should give rise to an implementation
- Connections to other work on cubical sets?

Thank you!

