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Univalent Foundations

I Vladimir Voevodsky formulated the Univalence Axiom (UA) in
Martin-Löf Type Theory as a strong form of the Axiom of
Extensionality.

I UA is classically justified by the interpretation of types as Kan
simplicial sets

I However, this justification uses non-constructive steps. Hence
this does not provide a way to compute with univalence.

I Goal: give a model of univalence in a constructive metatheory.
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A Category of Names and Substitutions

We define the category of names and substitutions C as follows.
Fix a countable set of names x , y , z , . . . distinct from 0, 1.

C is given by:

I objects are finite (decidable) sets of names I , J,K , . . .

I a morphism f : I → J is given by a set map

f : I → J ∪ {0, 1}

such that if f (x), f (y) ∈ J, then f (x) = f (y) implies x = y
(f is injective on its defined elements.)
This represents a substitution: assign values 0 or 1 to
variables or rename them.



A Category of Names and Substitutions

I Composition of f : I → J and g : J → K defined by

(g ◦ f )(x) =

{
g(fx) f defined on x ,

fx otherwise;

We write fg for g ◦ f .

I For each I we assume a selected fresh name xI /∈ I .



Cubical Sets

Definition
A cubical set X is a functor X : C → Set.

So a cubical set X is given by sets X (I ) for each I , and maps
X (I )→ X (J), a 7→ af for f : I → J with

a1 = a and (af )g = a(fg).

Call an element of X (I ) and I -cube.



Cubical Sets

Remark

I Kan’s original approach (1955) to combinatorial homotopy
theory used cubical sets

I Close to the presentation of cubical sets as in Crans’ thesis

I Our notion is equivalent to nominal sets with 01-substitions
(Pitts, Staton)



Cubical Sets

Think of names x as a name for a “dimension” and

I X (∅) as points,

I X ({x}) as lines in dimension x ,

I X ({x , y}) as squares in the dimensions x , y ,

I X ({x , y , z}) as cubes,

I . . .



Cubical Sets: Faces

For x ∈ I the maps (x = 0), (x = 1): I → I − x sending x to 0 and
1 respectively are called the face map.

An I -cube θ of X connects its two faces θ(x = 0) and θ(x = 1):

θ(x = 0)
θ
x

// θ(x = 1)



Cubical Sets: Degeneracies

f : I → J is a degeneracy map if f is defined on all elements in I
and J has more elements than I .

If x /∈ I , consider the inclusion (x) : I → I , x . We have
(x)(x = 0) = 1 = (x)(x = 1), and so for an I -cube α of X :

α
α(x)

x
// α

If β = α(x) is such a degenerate I , x-cube, we can think of β to be
independent of the dimension x .



Cubical Sets as a Category with Families

Cubical sets form (as any presheaf category) a model of type
theory:

I The category of contexts Γ ` and substitutions σ : ∆→ Γ is
the category of cubical sets.

I Types Γ ` A are given by

Aα a set, for α ∈ Γ(I ), I ∈ C,
Aα→ Aαf a map, for f : I → J in C,

a 7→ af

such that a1 = a, (af )g = a(fg).

I Terms Γ ` t : A are given by tα ∈ Aα such that
(tα)f = t(αf ).



Cubical Sets as a Category with Families

I For Γ ` A the context extension Γ.A ` is defined as

(α, a) ∈ (Γ.A)(I ) iff α ∈ Γ(I ) and a ∈ Aα,

(α, a)f = (αf , af ).

We can define the projections p: Γ.A→ Γ and Γ.A ` q : A p by

p(α, a) = α,

q(α, a) = a.

This gives a model of Π and Σ but will not get us the identity type
we want!



Identity Types

The degeneracy operations give us a natural interpretation of the
identity type Γ ` IdA a b for Γ ` a : A and Γ ` b : A:
For α ∈ Γ(I ) we define ω ∈ (IdA a b)α if

ω ∈ Aα(xI ) s.t. ω(xI = 0) = aα and ω(xI = 1) = bα.

(Recall: xI is a fresh name; xI /∈ I )
We can extend f : I → J to (f , xI = xJ) : I , xI → J, xJ , and define
the map (IdA a b)α→ (IdA a b)αf by

ωf =def ω(f , xI = xJ) ∈ Aαf (xJ).



Identity Types

This immediately justifies the introduction rule

Γ ` a : A

Γ ` Refa : IdA a a

by setting (Refa)α = a α(xI ).

But the elimination rule is not justified! We have to strengthen our
notion of types!



Kan condition, classically

Classically, the Kan condition can be stated as:

any open box can be filled



Effectivity Problems

There are two main effectivity problems with the Kan condition:

I Closure of the Kan condition under exponentiation seems to
essentially use decidability of degeneracy.

I A Kripke counter-model shows that Kan fibrations need not
have equivalent fibres in a constructive setting (M. Bezem &
T. Coquand).

So we have to refine this notion!



Kan condition, revisited

Let X be a cubical set; we first define the notion of an open box.
Let J, x ⊆ I with x /∈ J. Set

O+(J, x) = {(x , 0)} ∪ {(y , c) | y ∈ J ∧ c ∈ {0, 1}}.

An open box ~u is given by uyc ∈ X (I − y) for (y , c) ∈ O+(J, x) s.t.

uyc(z = d) = uzd(y = c) for (y , c), (z , d) ∈ O+(J, x), y 6= z

(Similar: boxes given by O−(J, x) which contains (x , 1) instead of
(x , 0))



Open Box

For example, a box ~u = ux0, uy0, uy1 has the shape:

uy0

OO

ux0
//

uy1

OO

Note that ~u may also depend on other variables (i.e., may consist
of higher cubes).



The Uniform Kan Condition

X is constructive Kan cubical set if we have operations X↑ such
that for any open box ~u in X (I ) indexed by O+(J, x) (where
J, x ⊆ I ) we have fillers

X↑~u ∈ X (I )

such that for (y , c) ∈ O+(J, x)

(X↑~u)(y = c) = uyc

and (!) for f : I → K defined on J, x

(X↑~u)f = X↑(~u f )

where ~uf is the open box given by the uyc(f − y) ∈ X (K − fy)
where (f − y) : I − y → K − fy .



The Uniform Kan Condition

(Similarly, we require X↓ operations for O−-indexed open boxes.)

We set

X+~u = (X↑~u)(x = 1),

X−~u = (X↓~u)(x = 0).

Example:

X↑~u

X+~u //

uy0

OO

ux0
//

uy1

OO



The Uniform Kan Condition

Similar operations were already considered in an approach using
semi-simplicial sets (B. Barras, T. Coquand, SH).

In a classical metatheory, the uniform Kan condition follows from
the ordinary Kan condition.

Theorem
If a Kan cubical set X has decidable degeneracies, it also has the
uniform Kan operations.



Constructive Kan Fibrations

A type Γ ` A is a (constructive) Kan fibration if for all α ∈ Γ(I ) we
have operations

Aα↑~u ∈ Aα for open boxes ~u

where uyc ∈ Aα(y = c), (y , c) ∈ O+(J, x) such that
(Aα↑~u)(y = c) = uyc and for f : I → K defined on J, x

(Aα↑~u)f = (Aαf )↑(~u f ).

(Similarly we require operations Aα↓~u.)



Model of Type Theory

By restricting types Γ ` A to constructive Kan fibrations, we get
an effective model of type theory.

Theorem
Constructive Kan fibrations are closed under Π-, Σ- and Id-types.

Adding this extra conditions solves the effectivity problem!



Identity Type (cont.)

Theorem
If Γ.A ` P is Kan fibration, then there is a term J s.t.

Γ ` A Γ ` a : A Γ ` b Γ ` p : IdA a b Γ ` u : P[a]

Γ ` J(p, u) : P[b]

Proof.
Let α be an I -cube of Γ; then pα connects aα and bα in
dimension x with x /∈ I . So we get an I , x-cube in Γ.A:

[a]α
(α(x),pα)

x
// [b]α

We define J(p, u)α = P(α(x), pα)+(uα).



Identity Type (cont.)

Note that we have a line:

uα
P(α(x),pα)↑(uα) // J(p, u)α

In particular, if p = Refa this gives a term of

Γ ` IdP[a] u (J(Refa, u)). (1)

One can also show that the singleton type Σx : A IdA a x is
contractible.
This suffices to develop basic properties of univalent mathematics
(N.A. Danielsson).
(To get (1) as definitional equality J(Refa, u) = u one has to
consider regular fibrations.)



Kan Completion

We can “complete” any cubical set X to a Kan cubical set X ′.

Add operations X+,X↑,X↓,X− in a free way, i.e., by considering
these operations as constructors.

The uniformity conditions determine how a morphism acts on the
new constructors.

This defines a Kan cubical set such that for any morphism X → Y
with Y Kan can be extended to X ′ → Y .



The Circle S1

S1 is the Kan completion of the cubical set generated by a point
base and a line loop connecting base to base.

For a type S1 ` P with ` a : P base and ` l : P loop we can
define S1 ` E : P satisfying

E base = a and E loop = l .



Propositional Reflection

For a Kan cubical set X we define inh(X ).

inh(X ) is a h-proposition that states that X is inhabited.

To X we add a constructor αx(a0, a1) for an I , x-cube (x /∈ I ) for
I -cubes a0, a1 and set

αx(a0, a1)(x = d) = ad for d = 0, 1

(αx(a0, a1))f = αfx(a0(f − x), a1(f − x)) f def. on x

Additionally we have constructors for the Kan operations, and get
a Kan cubical set inh(X ) as before.

If Y is a h-proposition, then X → Y gives inh(X )→ Y .



Universe

The universe U of Kan cubical sets is intuitively as follows:

I points of U are (small) Kan cubical sets

I a line in U between A and B can be seen as a “heterogeneous”
notion of lines, cubes, . . . , a→ b where a and b are I -cubes
of A and B respectively, where we can fill all open boxes

I . . .



Universe

More formally, A ∈ U(I ) is given by

I a family of (small) sets Af with f : I → J;

I maps Af → Afg , a 7→ ag if g : J → K , satisfying a1 = a and
(ag)h = a(gh);

I operations Af ↑, Af ↓ analogous to the uniform Kan fillings,
e.g., Af ↑~a ∈ Af if ayc ∈ Af (y=c) for (y , c) ∈ O+(K , x),
K , x ⊆ J, is an open box.

This defines a cubical set (with (Af )g = Afg ).



Equivalence of Types

A map σ : A→ B between to Kan cubical sets A and B is an
equivalence if there is a map δ : B → A and a map σδb → b and a
transformation of any equality ω : σa→ b (where a and b are
I -cubes of A and B resp.) to a I , x-cube in A and an I , x , y -cube
in B:

a
ω∗

// δb

σa
σω∗

//

ω

��

σδb

��
b

b(x)
// b



From Equivalence to Equality of Types

We can transform an equivalence σ : A→ B into a line C in U(x)
between A and B. Define the sets Cf for f : {x} → I as follows.

I If fx = 0, set Cf = A(I ).

I If fx = 1, set Cf = B(I ).

I If f is defined on x , fx = y , we set Cf to consist of pairs
(a, b) where

a ∈ A(I − y) and b ∈ B(I ) s.t. b(y = 0) = σa.

From the fact that σ is an equivalence one can check elementary
that C has the uniform Kan properties.



Conclusion and Further Work

I Cubical sets are suitable for modeling type theory, especially
Id-types

I The uniform Kan condition gives a well-behaved notion in a
constructive setting; all results are concrete and effective

I We only checked a weak corollary of the Axiom of Univalence
but we expect Univalence to hold in the model

I Close connections to nominal sets (Pitts) and internal
parametricity (Bernardy, Moulin); should give rise to an
implementation

I Connections to other work on cubical sets?



Thank you!


