A Model of Type Theory in Cubical Sets

Simon Huber (j.w.w. Marc Bezem and Thierry Coquand)

University of Gothenburg

Barcelona, 23. September 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Univalent Foundations

- Vladimir Voevodsky formulated the Univalence Axiom (UA) in Martin-Löf Type Theory as a strong form of the Axiom of Extensionality.
- UA is *classically* justified by the interpretation of types as *Kan* simplicial sets
- However, this justification uses non-constructive steps. Hence this does not provide a way to compute with univalence.
- ► Goal: give a model of univalence in a constructive metatheory.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

- 1. Cubical Sets
- 2. Constructive Kan Cubical Sets
- 3. Kan completion, Spheres, Propositional Reflection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

4. Universe

A Category of Names and Substitutions

We define the category of names and substitutions C as follows. Fix a countable set of *names* x, y, z, ... distinct from 0, 1.

- \mathcal{C} is given by:
 - ▶ objects are finite (decidable) sets of names *I*, *J*, *K*,...
 - a morphism $f: I \rightarrow J$ is given by a set map

 $f: I \to J \cup \{0,1\}$

such that if $f(x), f(y) \in J$, then f(x) = f(y) implies x = y(*f* is injective on its *defined* elements.) This represents a substitution: assign values 0 or 1 to variables or rename them.

A Category of Names and Substitutions

• Composition of $f: I \rightarrow J$ and $g: J \rightarrow K$ defined by

$$(g \circ f)(x) = egin{cases} g(fx) & f ext{ defined on } x, \\ fx & ext{ otherwise;} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We write fg for $g \circ f$.

For each *I* we assume a selected fresh name $x_I \notin I$.

Cubical Sets

Definition A cubical set X is a functor $X : C \to \mathbf{Set}$. So a cubical set X is given by sets X(I) for each I, and maps $X(I) \to X(J), a \mapsto af$ for $f : I \to J$ with a1 = a and (af)g = a(fg).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Call an element of X(I) and *I*-cube.

Cubical Sets

Remark

- Kan's original approach (1955) to combinatorial homotopy theory used cubical sets
- Close to the presentation of cubical sets as in Crans' thesis
- Our notion is equivalent to nominal sets with 01-substitions (Pitts, Staton)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cubical Sets

▶ ...

Think of names x as a name for a "dimension" and

- ► X(Ø) as points,
- ► X({x}) as lines in dimension x,
- $X({x, y})$ as squares in the dimensions x, y,

► X({x, y, z}) as cubes,

Cubical Sets: Faces

For $x \in I$ the maps $(x = 0), (x = 1): I \to I - x$ sending x to 0 and 1 respectively are called the face map.

An *I*-cube θ of *X* connects its two *faces* $\theta(x = 0)$ and $\theta(x = 1)$:

$$\theta(x=0) \xrightarrow{\theta} \theta(x=1)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cubical Sets: Degeneracies

 $f: I \rightarrow J$ is a degeneracy map if f is defined on all elements in I and J has more elements than I.

If $x \notin I$, consider the inclusion $(x): I \to I, x$. We have (x)(x=0) = 1 = (x)(x=1), and so for an *I*-cube α of *X*:

$$\alpha \xrightarrow[x]{\alpha(x)} \alpha$$

If $\beta = \alpha(x)$ is such a degenerate *I*, *x*-cube, we can think of β to be *independent of the dimension x*.

Cubical Sets as a Category with Families

Cubical sets form (as any presheaf category) a model of type theory:

- The category of contexts Γ ⊢ and substitutions σ: Δ → Γ is the category of cubical sets.
- Types $\Gamma \vdash A$ are given by

 $A\alpha$ a set,for $\alpha \in \Gamma(I), I \in \mathcal{C},$ $A\alpha \to A\alpha f$ a map,for $f: I \to J$ in $\mathcal{C},$ $a \mapsto af$

such that a1 = a, (af)g = a(fg).

• Terms $\Gamma \vdash t$: *A* are given by $t\alpha \in A\alpha$ such that $(t\alpha)f = t(\alpha f)$.

Cubical Sets as a Category with Families

For $\Gamma \vdash A$ the context extension $\Gamma.A \vdash$ is defined as

$$(\alpha, a) \in (\Gamma.A)(I)$$
 iff $\alpha \in \Gamma(I)$ and $a \in A\alpha$,
 $(\alpha, a)f = (\alpha f, af).$

We can define the projections $p: \Gamma.A \rightarrow \Gamma$ and $\Gamma.A \vdash q: A p$ by

$$p(\alpha, \mathbf{a}) = \alpha,$$
$$q(\alpha, \mathbf{a}) = \mathbf{a}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This gives a model of Π and Σ but will not get us the identity type we want!

Identity Types

The degeneracy operations give us a natural interpretation of the identity type $\Gamma \vdash Id_A \ a \ b$ for $\Gamma \vdash a : A$ and $\Gamma \vdash b : A$: For $\alpha \in \Gamma(I)$ we define $\omega \in (Id_A \ a \ b)\alpha$ if

$$\omega \in A\alpha(x_I) \text{ s.t. } \omega(x_I = 0) = a\alpha \text{ and } \omega(x_I = 1) = b\alpha.$$

(Recall: x_I is a fresh name; $x_I \notin I$) We can extend $f: I \to J$ to $(f, x_I = x_J): I, x_I \to J, x_J$, and define the map $(Id_A \ a \ b)\alpha \to (Id_A \ a \ b)\alpha f$ by

$$\omega f =_{\mathsf{def}} \omega(f, x_I = x_J) \in A \alpha f(x_J).$$

Identity Types

This immediately justifies the introduction rule

 $\frac{\Gamma \vdash a : A}{\Gamma \vdash \operatorname{Ref} a : \operatorname{Id}_A a a}$

by setting $(\text{Ref}a)\alpha = a \alpha(x_l)$.

But the elimination rule is *not* justified! We have to strengthen our notion of types!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Kan condition, classically

Classically, the Kan condition can be stated as: any open box can be filled

(ロ)、(型)、(E)、(E)、 E) の(の)

There are two main *effectivity problems* with the Kan condition:

- Closure of the Kan condition under exponentiation seems to essentially use *decidability* of degeneracy.
- A Kripke counter-model shows that Kan fibrations need not have equivalent fibres in a constructive setting (M. Bezem & T. Coquand).

So we have to refine this notion!

Kan condition, revisited

Let X be a cubical set; we first define the notion of an *open box*. Let $J, x \subseteq I$ with $x \notin J$. Set

$$O^+(J,x) = \{(x,0)\} \cup \{(y,c) \mid y \in J \land c \in \{0,1\}\}.$$

An open box \vec{u} is given by $u_{yc} \in X(I-y)$ for $(y, c) \in O^+(J, x)$ s.t.

$$u_{yc}(z=d)=u_{zd}(y=c) \quad ext{ for } (y,c), (z,d)\in O^+(J,x), y
eq z$$

(Similar: boxes given by $O^{-}(J, x)$ which contains (x, 1) instead of (x, 0))

Open Box

For example, a box $\vec{u} = u_{x0}, u_{y0}, u_{y1}$ has the shape:

Note that \vec{u} may also depend on other variables (i.e., may consist of higher cubes).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Uniform Kan Condition

X is constructive Kan cubical set if we have operations $X\uparrow$ such that for any open box \vec{u} in X(I) indexed by $O^+(J,x)$ (where $J, x \subseteq I$) we have fillers

 $X \uparrow \vec{u} \in X(I)$

such that for $(y, c) \in O^+(J, x)$

$$(X\uparrow \vec{u})(y=c)=u_{yc}$$

and (!) for $f: I \to K$ defined on J, x

$$(X \uparrow \vec{u})f = X \uparrow (\vec{u} f)$$

where $\vec{u}f$ is the open box given by the $u_{yc}(f - y) \in X(K - fy)$ where $(f - y): I - y \to K - fy$.

The Uniform Kan Condition

(Similarly, we require $X \downarrow$ operations for O^- -indexed open boxes.)

We set

$$X^+ \vec{u} = (X \uparrow \vec{u})(x=1),$$

 $X^- \vec{u} = (X \downarrow \vec{u})(x=0).$

Example:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Similar operations were already considered in an approach using semi-simplicial sets (B. Barras, T. Coquand, SH).

In a classical metatheory, the uniform Kan condition follows from the ordinary Kan condition.

Theorem

If a Kan cubical set X has decidable degeneracies, it also has the uniform Kan operations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Constructive Kan Fibrations

A type $\Gamma \vdash A$ is a *(constructive)* Kan fibration if for all $\alpha \in \Gamma(I)$ we have operations

 $Alpha\uparrow \vec{u} \in Alpha$ for open boxes \vec{u} where $u_{yc} \in Alpha(y=c), (y,c) \in O^+(J,x)$ such that $(Alpha\uparrow \vec{u})(y=c) = u_{yc}$ and for $f: I \to K$ defined on J, x $(Alpha\uparrow \vec{u})f = (Alpha f)\uparrow(\vec{u} f).$

(Similarly we require operations $A\alpha \downarrow \vec{u}$.)

By restricting types $\Gamma \vdash A$ to constructive Kan fibrations, we get an effective model of type theory.

Theorem Constructive Kan fibrations are closed under Π -, Σ - and Id-types.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Adding this extra conditions solves the effectivity problem!

Identity Type (cont.)

Theorem If $\Gamma.A \vdash P$ is Kan fibration, then there is a term J s.t.

$$\frac{\Gamma \vdash A \quad \Gamma \vdash a : A \quad \Gamma \vdash b \quad \Gamma \vdash p : \mathsf{Id}_A \ a \ b \quad \Gamma \vdash u : P[a]}{\Gamma \vdash \mathsf{J}(p, u) : P[b]}$$

Proof.

Let α be an *I*-cube of Γ ; then $p\alpha$ connects $a\alpha$ and $b\alpha$ in dimension x with $x \notin I$. So we get an *I*, x-cube in Γ .A:

$$[a] \alpha \xrightarrow[x]{(\alpha(x), p\alpha)} [b] \alpha$$

We define $J(p, u)\alpha = P(\alpha(x), p\alpha)^+(u\alpha)$.

Identity Type (cont.)

Note that we have a line:

$$u\alpha \xrightarrow{P(\alpha(x),p\alpha)\uparrow(u\alpha)} J(p,u)\alpha$$

In particular, if $p = \operatorname{Ref} a$ this gives a term of

$$\Gamma \vdash \mathsf{Id}_{P[a]} \ u \ (\mathsf{J}(\mathsf{Ref}a, u)). \tag{1}$$

One can also show that the singleton type $\Sigma x : A \operatorname{Id}_A a x$ is contractible.

This suffices to develop basic properties of univalent mathematics (N.A. Danielsson).

(To get (1) as definitional equality J(Refa, u) = u one has to consider *regular* fibrations.)

Kan Completion

We can "complete" any cubical set X to a Kan cubical set X'.

Add operations $X^+, X\uparrow, X\downarrow, X^-$ in a *free* way, i.e., by considering these operations as *constructors*.

The uniformity conditions determine how a morphism acts on the new constructors.

This defines a Kan cubical set such that for any morphism $X \to Y$ with Y Kan can be extended to $X' \to Y$.

 S^1 is the Kan completion of the cubical set generated by a point **base** and a line **loop** connecting **base** to **base**.

For a type $S^1 \vdash P$ with $\vdash a : P$ base and $\vdash I : P$ loop we can define $S^1 \vdash E : P$ satisfying

E base = a and E loop = l.

Propositional Reflection

For a Kan cubical set X we define inh(X).

inh(X) is a *h*-proposition that states that X is inhabited.

To X we add a constructor $\alpha_x(a_0, a_1)$ for an I, x-cube $(x \notin I)$ for *I*-cubes a_0, a_1 and set

$$\begin{aligned} \alpha_x(a_0,a_1)(x=d) &= a_d & \text{for } d = 0,1 \\ (\alpha_x(a_0,a_1))f &= \alpha_{f_x}(a_0(f-x),a_1(f-x)) & f \text{ def. on } x \end{aligned}$$

Additionally we have constructors for the Kan operations, and get a Kan cubical set inh(X) as before.

If Y is a h-proposition, then $X \to Y$ gives $inh(X) \to Y$.

Universe

The universe U of Kan cubical sets is intuitively as follows:

- points of U are (small) Kan cubical sets
- ► a line in U between A and B can be seen as a "heterogeneous" notion of lines, cubes, ..., a → b where a and b are I-cubes of A and B respectively, where we can fill all open boxes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ ...

Universe

More formally, $A \in U(I)$ is given by

- a family of (small) sets A_f with $f: I \rightarrow J$;
- ▶ maps $A_f \rightarrow A_{fg}$, $a \mapsto ag$ if $g: J \rightarrow K$, satisfying a1 = a and (ag)h = a(gh);
- operations A_f↑, A_f↓ analogous to the uniform Kan fillings, e.g., A_f↑*ā* ∈ A_f if a_{yc} ∈ A_{f(y=c)} for (y, c) ∈ O⁺(K, x), K, x ⊆ J, is an open box.

This defines a cubical set (with $(Af)_g = A_{fg}$).

Equivalence of Types

A map $\sigma: A \to B$ between to Kan cubical sets A and B is an equivalence if there is a map $\delta: B \to A$ and a map $\sigma \delta b \to b$ and a transformation of any equality $\omega: \sigma a \to b$ (where a and b are *I*-cubes of A and B resp.) to a *I*, x-cube in A and an *I*, x, y-cube in B:

From Equivalence to Equality of Types

We can transform an equivalence $\sigma: A \to B$ into a line C in U(x) between A and B. Define the sets C_f for $f: \{x\} \to I$ as follows.

• If
$$f_X = 0$$
, set $C_f = A(I)$.

• If
$$f_X = 1$$
, set $C_f = B(I)$.

If f is defined on x, fx = y, we set C_f to consist of pairs (a, b) where

$$a\in A(I-y)$$
 and $b\in B(I)$ s.t. $b(y=0)=\sigma a.$

From the fact that σ is an equivalence one can check elementary that C has the uniform Kan properties.

Conclusion and Further Work

- Cubical sets are suitable for modeling type theory, especially Id-types
- The uniform Kan condition gives a well-behaved notion in a constructive setting; all results are concrete and effective
- We only checked a weak corollary of the Axiom of Univalence but we expect Univalence to hold in the model

- Close connections to nominal sets (Pitts) and internal parametricity (Bernardy, Moulin); should give rise to an implementation
- Connections to other work on cubical sets?

Thank you!

<□ > < @ > < E > < E > E のQ @