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We present an interpretation of a version of dependent type theory where a type is

interpreted by a Kan semisimplicial set. This interprets only a weak notion of conversion

similar to the one used in the first published version of Martin-Löf type theory. Each

truncated version of this model can be carried out internally in dependent type theory,

and we have formalized the first truncated level, which is enough to represent

isomorphisms of algebraic structure as equality.

Introduction

This paper is part of a general program trying to understand the “homotopy theoretic”

models of type theory (Awodey and Warren 2009) from a constructive point of view, in

order to obtain a computational interpretation of the axiom of univalence. This axiom,

introduced by Voevodsky has been justified semantically, in a model of type theory where

a type is interpreted by a Kan simplicial set (Voevodsky 2010). The situation is however

not completely satisfactory since this justification takes place in ZFC, and uses crucially

non-effective arguments (a combination of classical logic and the axiom of choice), while

one of the ambitions of type theory is to be a language for constructive mathematics

(Martin-Löf 1973). It is a weird fact that this unexpected connection between homotopy

theory/algebraic topology and type theory (Awodey and Warren 2009; Voevodsky 2010;

Kapulkin et al. 2012) involves non-effective reasoning since algebraic topology has its

historical root in combinatorial topology, which can be thought of as a constructive

counterpart of general topology (Dubucs 1988). It is thus natural to try to justify the

univalent axiom in a constructive way. Another motivation for this work is a conjecture

of Voevodsky about the computational content of the axiom of univalence (Voevodsky

2010); a constructive understanding of the models of univalence ought to bring light to

this issue.

The axiom of univalence can be seen as a generalization of one form of the axiom of

extensionality in Church’s simple type theory (Church 1940), stating that two equivalent
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propositions are equal. As shown by Voevodsky (Voevodsky 2010), this axiom implies also

another form of extensionality, function extensionality, stating that two pointwise equal

functions are equal. Motivated by considerations from proof theory (the problem of con-

sistency of simple type theory), both† Takeuti (Takeuti 1953) and Gandy (Gandy 1956)

provided an “explanation” of these two forms of extensionality, by giving an interpreta-

tion of extensional simple type theory (extended with these two axioms of extensionality)

in intensional simple type theory (formulated without these two axioms). This interpre-

tation consists essentially in defining the equality by induction on the types. The equality

of propositions is defined to be logical equivalence, and the equality at function types will

be roughly defined to be pointwise equality. (This is actually one of the first instances of

the powerful notion of “logical relation” in type theory (Statman 1985).)

It is quite natural to try to generalize Takeuti-Gandy’s method and see if this can give

an explanation of the axiom of univalence. One strong form of this generalization would

be an interpretation/translation of dependent type theory extended with the axiom of

univalence in dependent type theory. Furthermore, by analogy with Takeuti-Gandy’s

translation, we would expect that this interpretation can take place even in dependent

type theory without identity type (in the same way that Aczel’s interpretation gives a

translation of CZF in dependent type theory without identity types). Our paper explores

this possibility, but succeeds only, even for “truncated version”, in giving an interpreta-

tion of a weaker form of type theory (the rules of which are summarized in Figure 3)

in dependent type theory (the rules of which are summarized in Figure 2). Even this is

not trivial since one needs to interpret judgmental rules in a definitional way, an aspect

which is usually not covered (Hofmann 1994; Palmgren 2012) (this issue is discussed,

but not solved in (Hofmann 1994)), while it is crucial for stating precisely what type

theory has been modeled. Furthermore, this interpretation has been formally checked

in the truncated model at level 6 2, giving a computational interpretation to transfer

structures and properties for isomorphic structures (with the running examples described

in Section 3).

This model interprets a type by a Kan semisimplicial set. There are two motivations

for this choice. The first is that it is possible to represent internally truncated version

of semisimplicial sets, as explained in Section 4, while it is not clear how to do it for

truncated version (even at low level) of simplicial sets. The second motivation is that one

obstacle for a constructive understanding of the simplicial set model is the (often implicit)

use of decidability of the notion of degeneracy‡. By looking only at semisimplicial sets, we

remove this problem. Also a Kan semisimplicial set contains automatically some simplices

that can play the role of degenerate elements, e.g. any point is connected to itself by a

line. While this is done only formally in this paper at level 6 1, it is expected that

this interpretation would generalize at any truncated levels. The last section indicates

† The two works seem to be independent, and Gandy’s interpretation can already be found in his PhD
thesis (Gandy 1953).

‡ A Kripke counter-model shows that, because of this, we cannot constructively work with the usual

definition of Kan simplicial set, even if we give the filling as explicit operations (Bezem and Coquand
2013).
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how it can be generalized to arbitrary levels, but this time in an informal constructive

metatheory, by describing a universe of Kan semisimplicial set, and a proof that this

universe satisfies the Kan property. We also explain how to transform a weak equivalence

between two types to an equality of these types. The interpretation of lambda abstraction

and identity however gets artificially complicated even at the truncated level, and we

choose not to include it in the present version of this paper.

Recently, it was possible to design a model of univalence in a constructive metatheory

(not however internally in dependent type theory) (Bezem et al. 2013) where a type is

interpreted as a Kan cubical set. W.r.t. this work, the present paper contains the following

two contributions: one is the fact that the truncated version of the present model can

be done internally, the other is that the description of the universe and a proof that it

satisfies the Kan property has strong similarity with what happens for cubical sets. There

should be a common general picture, and this should be an interesting future work to

formulate this common generalization.

The paper is organized as follows. We first present the Takeuti-Gandy interpretation

of Church’s simple type theory (Church 1940). Roughly speaking, this interprets a type

as a type with an equivalence relation, which is reminiscent of Bishop’s notion of set

in constructive mathematics (Bishop 1967). We present then a first semantics, where a

type is interpreted as a truncated Kan semisimplicial set of level 6 1. The correctness

of this semantics has been formally verified. The system we interpret is close to the first

published version of Martin-Löf type theory (Martin-Löf 1973). We give some applications

of this semantics, in particular transport along isomorphisms of structures. We then

present a universe of (small) Kan semisimplicial sets, which form a semisimplicial set,

and we explain why this universe has the Kan filling property and how to transform a

weak equivalence between small Kan semisimplicial sets into a path joining them.

1. The Takeuti-Gandy interpretation

The Takeuti-Gandy interpretation (Gandy 1956; Takeuti 1953) was developed for Church’s

simple type theory (Church 1940). It is natural to analyze the computational interpreta-

tion in this case, before considering dependent type theory. In this theory, we have a type

o of propositions and function types A→ B. The idea is to define (extensional) equality

at type A by induction on A. However at the same time, we may need to “restrict” the

type A since it may contain non extensional elements.

We can describe this interpretation as an internal interpretation in dependent type

theory. For any simple type A we define a corresponding type [A] and an equality relation

=A on the type [A]. Since we are using dependent type theory, where we use Type to

represent propositions, this relation is of type [A] → [A] → Type. The type [o] is an

universe, and =o is logical equivalence. The type [A→ B] is defined as a sigma type

[A→ B] =
∑

f :[A]→[B]

∏
x:[A]

∏
u:[A]

x =A u→ f x =B f u

An element of type [A→ B] is thus a pair f, f ′ where f is of type [A]→ [B] and f ′ is a
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Γ `
1 : Γ → Γ

σ : ∆ → Γ δ : Θ → ∆

σδ : Θ → Γ

Γ ` t : A σ : ∆ → Γ

∆ ` tσ : A

() `
Γ `

Γ.A `
Γ `

p : Γ.A→ Γ

Γ `
Γ.A ` q : A

σ : ∆ → Γ ∆ ` u : A

(σ, u) : ∆ → Γ.A

Γ.A ` b : B

Γ ` λb : A→ B

Γ ` w : A→ B Γ ` u : A

Γ ` app(w, u) : B

1σ = σ (σδ)ν = σ(δν) (σ, u)δ = (σδ, uδ)

p(σ, u) = σ q(σ, u) = u

app(w, u)δ = app(wδ, uδ) app((λb)σ, u) = b(σ, u)

Fig. 1. Rules of Simple Type Theory with Explicit Substitution

proof that this function is extensional. We define (f, f ′) =A→B (g, g′) to be∏
x:[A]

∏
u:[A]

x =A u→ f x =B g u

A context Γ is then interpreted by a type [Γ] with a relation =Γ, and a term Γ ` t : A is

interpreted by a function tρ : [A] for ρ : [Γ] together with a proof tα of tρ0 =A tρ1 whenever

α is a proof of ρ0 =Γ ρ1. ρ0 =Γ ρ1 implies tρ0 =A tρ1. The equality relation =Γ is an

equivalence relation on [Γ] and in particular, for each ρ : [Γ] we have a proof 1ρ : ρ =Γ ρ.

The interpretation of (λt)ρ, for Γ.A ` t : B, is the pair f, f ′ where f u = t(ρ, u) and

f ′ x u ω = t(1ρ, ω).

Figure 1 presents some key rules of simple type theory.

In general a simple type A is interpreted by a type [A] with a proof relevant relation =A

on this type. In order to motivate the last section describing general Kan semisimplicial

sets, we now give an alternative description of this semantics, using informal set theory

instead. It should be clear how to go back and forth between the two presentations.

The pair [A],=A can be also presented as a set X[0], intuitively a set of “points”,

together with a set of “lines” X[1] and two maps d0, d1 : X[1] → X[0]; a proof p of

a0 =A a1 corresponds to a line p in X[1] with dip = ai. Given X = X[0], X[1] and

Y = Y [0], Y [1] the function space Y X is then defined by taking Y X [0] to be the set

of pairs f, ηf with f : X[0] → Y [0] and ηf : X[1] → Y [1] such that diηf = fdi for

i = 0, 1. We can define app((f, ηf), u) = f u : Y [0] if u : X[0]. We define Y X [1] to be

the set of elements λ, f0, f1, ηf0, ηf1 with fi : X[0] → Y [0] and λ : X[1] → Y [1] such

that diλ = fidi and djηfi = fidj . We define then di(λ, f0, ηf0, f1, ηf1) = fi, ηfi. We can

define app((λ, f0, f1, ηf0, ηf1), ω) = λω : Y [1] if ω : X[1]. With this definition we have
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diapp(α, ω) = app(diα, diω). A type A is then interpreted by a pair of sets A[0], A[1] with

two maps d0, d1 : A[1]→ A[0]. Similarly, a context Γ is then interpreted by a pair of sets

Γ[0],Γ[1] with two maps d0, d1 : Γ[1] → Γ[0]. If Γ ` t : A, we should define tρ : A[0] for

ρ : Γ[0], and tα : A[1] for α : Γ[1] in such a way that di(tα) = t(diα) for i = 0, 1.

We get the following operational semantics, reading each equality as a reduction rule

(tσ)ρ = t(σρ) (σδ)ρ = σ(δρ) 1ρ = ρ (tσ)α = t(σα) (σδ)α = σ(δα) 1α = α

(σ, t)ρ = σρ, tρ p(ρ, u) = u q(α, ω) = ω

app(t1, t0)ρ = app(t1ρ, t0ρ) app(t1, t0)α = app(t1α, t0α)

app((λt)ρ, u) = t(ρ, u) app((λt)α, ω) = t(α, ω) app(η(λt)ρ, ω) = t(1ρ, ω)

di(ηf) = f diapp(λ, ω) = app(diλ, diω)

A logically equivalent definition of (f, f ′) =A→B (g, g′) would be

∀x : [A].f x =B g x

however, this definition would not provide the right definitional equality. In particular it

would not validate β-conversion

Γ ` t(1, u) = app(λt, u) : B

for Γ.A ` t : B and Γ ` u : A. With both definitions we get the equality

app(λt, u)ρ = t(1, u)ρ = t(ρ, uρ) : [B]

for ρ : Γ, while it is only with our definition that we get the equality

app(λt, u)α = t(1, u)α = t(α, uα) : t(ρ0, uρ0) =B t(ρ1, uρ1)

for α : ρ0 =Γ ρ1.

We do not interpret all the laws of cartesian closed category: the law

(λt)σ = λt(σp, q)

is not valid in this model. This is because the second component of (λt)σρ and (λt(σp, q))ρ

do not coincide in general since 1σρ may not coincide with σ1ρ. However all the equations

of Figure 1 are valid in this model. (We explain later why this set of laws is satisfactory

for representing one version of dependent type theory.) An important point is that to

require such an equality is not expressible in dependent type theory, if one wants to

express this as a conversion (and not only as a propositional equality).

The original motivation of this interpretation for both Takeuti and Gandy was the

consistency problem of higher-order arithmetic (Takeuti 1953; Gandy 1956). Simple type

theory without function extensionality is a simpler system, and it was expected that the

consistency of this simpler system would be easier to analyze. This has been confirmed

later, and the intuitionistic version of this system, presented in natural deduction, has

good proof theoretic properties (Martin-Löf 1971), which lead eventually to a proof-

theoretic analysis of the problem of consistency of higher-order arithmetic (Girard 1971;

Martin-Löf 1971).



B. Barras, Th. Coquand and S. Huber 6

2. Effectivity problems with the Kan simplicial set model

One can see the Kan simplicial set model of type as a generalization of the previous

interpretation of simple type theory, where a simplicial set generalizes the notion of set

with a relation, and a Kan simplicial set generalizes the notion of set with an equivalence

relation.

When analyzing the Kan simplicial set model of type theory (Voevodsky 2010; Ka-

pulkin et al. 2012; Streicher 2011; Awodey and Warren 2009), one effectivity problem

relies on the use of the decidability of the notion of degeneracy and the fact that simplicial

maps have to commute with the degeneracy functions (this issue appears already above

in the semantics of simple type theory). Let us write [n] for the linear poset {0, . . . , n}.
Let ∆ be the category of such linear posets [n] with morphisms all monotone maps. The

category of simplicial sets if the presheaf category [∆op,Set]. A simplicial set is thus a

sequence of sets X[n] together with maps X[n] → X[m], u 7−→ uf for f : [m] → [n]

satisfying u1 = u and (uf)g = u(fg) : X[p] Another notation for uf would be X(f)(u).

if g : [p] → [m]. We write εi : [n − 1] → [n] for the injective map that omits i; this is

the ith face map, and we may write diu instead of uεi. An element u : X[n] is called

degenerate if, and only if, there is a non trivial surjective map g : [n] → [m] and an

element v : X[m] such that u = vg. In a constructive setting, to be degenerate is not in

general a decidable property. (It is decidable in the case of simple examples of spaces,

like the spheres, but it is not decidable as soon as we consider simplicial sets obtained

by exponentiation.) However the theory of simplicial sets and of Kan simplicial sets uses

this decidability at crucial points.

We give here a simple example of the use of this decidability. If p : B → A is a Kan

fibration, given two points a u : A[0] with a path ω : A[1] connecting a and u, one

expects the fibers B(a) and B(u) to be equivalent Kan simplicial sets. In order to define

the map f0 : B(a)[0]→ B(u)[0] one simply uses the Kan condition: given a point b : B[0]

such that p(b) = a : A[0] one can lift the path ω to a path ω′ in B such that d0ω
′ = b

and one may define f0 b = d1ω
′. But in order to define f1 : B(a)[1] → B(u)[1] it seems

necessary to define f1α by case whether α is degenerate or not. Moreover, it can be

shown, by a suitable Kripke counter-model (Bezem and Coquand 2013), that this fact is

not intuitionistically provable if we use the ordinary notion of Kan filling condition, even

if these fillings are explicitly given.

Similar problems are found when analyzing various proofs (May 1967; Goerss and

Jardine 1997) that BA is a Kan simplicial set if B is a Kan simplicial set. We conjecture

that this result is also not valid intuitionistically.

These effectivity problems make it impossible to use the Kan simplicial set model for

a computational interpretation of the axiom of univalence. There are various directions

that we can explore to overcome this problem. The direction we explore in this paper

is to interpret a type not as a Kan simplicial set, but as a Kan semisimplicial set. As

we shall show, this gives indeed an interpretation of one formulation of dependent type

theory. One important feature of this interpretation is furthermore that any truncated

version of the model can be carried out internally in dependent type theory. We do it

in this paper only for the first level, but it is possible to show that this can be done at
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all level. Another option is to analyze further the notion of degeneracy. This has been

done recently (Bezem et al. 2013), and gives a satisfactory interpretation of dependent

type theory (also with substitution under abstraction), but it does not seem possible to

describe this interpretation internally in dependent type theory.

3. The Takeuti-Gandy interpretation for dependent type theory

3.1. Identity type

The first predicative version 1972 of type theory (Martin-Löf 1972) did not have identity

types. Over the type of natural numbers for instance, equality was defined recursively us-

ing a universe. This version (Martin-Löf 1972) stayed unpublished for some time and the

identity type was introduced in the first published 1973 version of type theory (Martin-

Löf 1973). Since this version has not been described in the literature so far (for instance

the reference (Troelstra and van Dalen 1988) gives a presentation using another version

of the identity type), we present some remarks about it.

Proposition 3.1. In the 1973 version of type theory (Martin-Löf 1973), function exten-

sionality stating that IdA→B f g follows from∏
x:A

IdB app(f, x) app(g, x)

is not provable.

Proof. This follows from the fact that if IdT a u is provable in the empty context, then

a and u are convertible (Martin-Löf 1973), and the fact that we can have two functions

that are not convertible but pointwise equal e.g. the functions λn.n+ 0 and λn.0 + n on

natural numbers.

It is remarkable that the explanation of CZF in Type Theory (Aczel 1978), interpreting

a set as a well-founded tree up to bisimulation, does not use the identity type, so it is an

interpretation of CZF in the 1972 version of type theory (Martin-Löf 1972).

3.2. Type theory as a formal system and definitional equality

All rules of type theory are justified following the pattern:

1 The introduction rules give the meaning to the logical connectives (they are repre-

sented by constructors, following the terminology of functional programming).

2 The elimination rules are justified w.r.t. the introduction rules (they are represented

by defined functions).

3 These justifications take the form of computation rules (the function is defined by

case analysis).

A proof t of a type/proposition A is supposed to be a method to produce a canonical

proof of A. The method to produce a canonical proof is quite uniform: given a term t of

type A, we unfold the definitions until we reach a canonical proof. Using the terminology
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of functional programming, a canonical proof is represented as a term starting with a

constructor, and the method of computation is head reduction.

An important point is that computation rules can all be seen as unfolding definitions.

For instance, if we have a type N of natural numbers, an empty type N0 we can define

¬ : U → U by ¬A = A → N0. This definition of ¬ can be seen as a computation rule

(unfolding of definitions).

The situation is similar if we define a function f : Πx : N.C(x) by the equations

f 0 = a : C(0) f (n+ 1) = g n (f n) : C(n+ 1)

These equations define a function f .

A related point is that the typing/provability relation t : A is decidable (Martin-Löf

1973). To decide this relation reduces to the problem of comparing two given terms of

the same type. This can be done by unfolding definitions, which can be interpreted as

“computing” the meaning of the two terms, and comparing the result. For instance, if

we define

F 0 = A, F (n+ 1) = ¬ (F n)

then F 2 = (A→ N0)→ N0 : U since F 2 is by definition ¬ (F 1) which is by definition

(F 1) → N0 and F 1 is by definition ¬ (F 0) which is F 0 → N0 and F 0 is A. This

means that if t is of type F 2 and u is of type ¬ A then app(t, u) is well-typed.

This notion of definitional equality is analyzed in (Martin-Löf 1975). An early use

of this notion can be found in the paper (Martin-Löf 1971). It appeared also before in

the work on Automath (De Bruijn 1980) and in Tait’s analysis of Gödel’s Dialectica

interpretation (Tait 1967).

Figure 3 presents the rules of a version of type theory using explicit substitution.

One can argue that the conversion rule (λt)σ = λt(σp, q), which expresses the law of

substitution under abstraction, is not compatible with this idea of unfolding definition

(Martin-Löf 1973; Martin-Löf 1975). On the other hand, the rules in Figure 3 can be

seen as a formal description of basic rules of definitional equality.

The rules of type theory and weak type theory

The rules of type theory which we are using to formalize the proofs, and that we would

like to represent internally are summarized in Figure 2.

The type theory we interpret is a variation of the one presented in the references

(Martin-Löf 1973; Martin-Löf 1975; Troelstra and van Dalen 1988). Besides the usual

judgment Γ `, Γ ` A and Γ ` a : A, we also have the judgment Γ ` F : (A)Type for

families of types over a given type. (This judgment has been introduced by Martin-Löf

in his, unpublished, substitution calculus.)

The rules for equality that we validate in our formalized model are

Γ ` A Γ ` a : A Γ ` u : A

Γ ` EqA a u

Γ ` A Γ ` a : A

Γ ` ref a : EqA a a
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Γ `
1 : Γ → Γ

σ : ∆ → Γ δ : Θ → ∆

σδ : Θ → Γ

Γ ` A σ : ∆ → Γ

∆ ` Aσ
Γ ` t : A σ : ∆ → Γ

∆ ` tσ : Aσ

() `
Γ ` Γ ` A

Γ.A `
Γ ` A

p : Γ.A→ Γ

Γ ` A
Γ.A ` q : Ap

σ : ∆ → Γ Γ ` A ∆ ` u : Aσ

(σ, u) : ∆ → Γ.A

Γ.A ` B
Γ ` Π A B

Γ.A ` B Γ.A ` b : B

Γ ` λb : Π A B

Γ ` w : Π A B Γ ` u : A

Γ ` app(w, u) : B[u]

1σ = σ1 = σ (σδ)ν = σ(δν) [u] = (1, u)

(σ, u)δ = (σδ, uδ) p(σ, u) = σ q(σ, u) = u

app(w, u)δ = app(wδ, uδ) app(λb, u) = b[u]

(Π A B)σ = Π (Aσ) (B(σp, q))

Fig. 2. Rules of MLTT

Γ ` e : EqA a u Γ ` F : (A)Type Γ ` p : App(F, a)

Γ ` J e p : app(F, u)

These rules express the rules of identity type (where the computation rule is expressed as

propositional equality). We have also the extensionality rule (formulated in a name-free

way)

Γ ` p : Fun A (λEqapp(Fp,q) app(fp, q) app(gp, q))

Γ ` ext p : EqFun A F
f g

The substitution rules are then

(Eq A a u)σ = Eq Aσ aσ uσ (ext u)σ = ext uσ (J e p)σ = J eσ pσ

We can add rules for sigma types. The typing rules are

Γ ` A Γ ` F : (A)Type

Γ ` Sum A F

Γ ` a : A Γ ` b : App(F, a)

Γ ` (a, b) : Sum A F

Γ ` c : Sum A F

Γ ` pc : A

Γ ` c : Sum A F

Γ ` qc : App(F, pc)

and the computation rules

p(a, b) = a q(a, b) = b (Sum A F )σ = Sum Aσ Fσ

This version of type theory is called weak type theory, by analogy with the notion

of weak conversion in lambda-calculus (Martin-Löf 1975), since we do not include the
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Γ `
1 : Γ → Γ

σ : ∆ → Γ δ : Θ → ∆

σδ : Θ → Γ

Γ ` A σ : ∆ → Γ

∆ ` Aσ
Γ ` t : A σ : ∆ → Γ

∆ ` tσ : Aσ

Γ ` F : (A)Type σ : ∆ → Γ

∆ ` Fσ : (Aσ)Type

() `
Γ ` Γ ` A

Γ.A `
Γ ` A

p : Γ.A→ Γ

Γ ` A
Γ.A ` q : Ap

σ : ∆ → Γ Γ ` A ∆ ` u : Aσ

(σ, u) : ∆ → Γ.A

Γ ` A Γ.A ` B
Γ ` λB : (A)Type

Γ ` F : (A)Type Γ ` a : A

Γ ` App(F, a)

Γ ` A Γ ` F : (A)Type

Γ ` Fun A F

Γ.A ` b : App(Fp, q)

Γ ` λb : Fun A F

Γ ` w : Fun A F Γ ` u : A

Γ ` app(w, u) : App(F, u)

1σ = σ = σ1 (σδ)ν = σ(δν) 1 = (p, q)

(σ, u)δ = (σδ, uδ) p(σ, u) = σ q(σ, u) = u

(Fσ)δ = F (σδ) F1 = F

(Aσ)δ = A(σδ) A1 = A (aσ)δ = a(σδ) a1 = a

app(w, u)δ = app(wδ, uδ) App(F, u)δ = App(Fδ, uδ) (Fun A F )σ = Fun(Aσ)(Fσ)

app((λb)σ, u) = b(σ, u) App((λB)σ, u) = B(σ, u)

Fig. 3. Rules of WMLTT

conversion rule

(λt)σ = λt(σp, q)

The first published version of type theory (Martin-Löf 1973) did not have this rule. (The

type theory of Figure 3 is actually an extension of the theory presented in (Martin-Löf

1973), which used a system of combinators.) What are the consequences of not having this

rule is not clear. On one hand, this actually simplifies type checking since the conversion

(λB)σ = (λC)δ

is only possible if B = C and σ = δ, while with the rule of substitution under abstraction,

this may happen because B(σp, q) = C(δp, q). On the other hand, no precise conserva-

tivity theorem is know about the two versions of type theory. We conjecture that it is

not possible to have an internal representation of the full theory.

It was argued in (Martin-Löf 1975) that the weak version of type theory is actually

better behaved then the version allowing substitution under abstractions. This was not

however explored further and we think that it would be interesting to analyze more in

detail the difference between these two versions of type theory.
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4. A first version of the model

In this section, we present a model where a type is interpreted by a Kan semisimplicial

set of level 61. The collection of all such types is interpreted by a Kan semisimplicial

set of level 62. We interpret contexts as Kan semisimplicial sets of level 62. In this way,

we can interpret contexts of the form X : U, a : X, f : X → X where X varies over the

collection of all (small) Kan semisimplicial set of level 6 1. We give a model of weak type

theory in type theory, which furthermore interprets an extensional version of the identity

type. This model has been formally verified in the system Coq 8.4.

In the usual (set-based) presentation of semisimplicial sets, there is a single set for each

level (points, edges, etc.), and there are face maps that, for instance, return the three

edges forming the boundary of a given triangle. It is not clear how this presentation could

be internalized in a type-theoretical setting. It would make use of propositional equality

and one would need to state coherence conditions between provably but not definitionally

equal types. For truncated versions however, dependent types can be used to definitionally

express the relation between a semisimplicial set and its faces. In this settings, points

are the objects of a type. Let us call this type X0. Edges are represented by a type X1

parameterized by two points: given a, b : X0, the type X1 a b is the type of edges between a

and b. At level 3, we need to give three points a0, a1, a2 : X0 and three edges a01 : X1 a0 a1,

a02 : X1 a0 a2 and a12 : X1 a1 a2 to form the type of triangles X2 a0 a1 a2 a01 a02 a12. We

generally omit to mention the points since they can be recovered from the edges types,

and simply write X2 a01 a02 a12.

4.1. Kan completion

First we define Kan completion operations at each level. At level n, given n faces of level

n− 1 forming a “horn”, they produce the face of level n− 1 omitted in the horn.

Definition 4.1. At level 1, given two types A and B, we write A ↔ B for the type of

pair of functions (comp1
0, comp

1
1) such that

comp1
0 : A→ B and comp1

1 : B → A.

At level 2, given three types A0, A1, A2, and three heterogeneous relations R01, R02 and

R12,
§ we write R01 ↔ R02 ↔ R12 for the type of the following three operations:

comp2
0 : R01 a0 a1 → R02 a0 a2 → R12 a1 a2

comp2
1 : R01 a0 a1 → R12 a1 a2 → R02 a0 a2

comp2
2 : R02 a0 a2 → R12 a1 a2 → R01 a0 a1

for all a0 : A0, a1 : A1 and a2 : A2.

At level 3, given four types Ai (0 6 i < 4), six relations Rij (0 6 i < j < 4) and four

types of triangles Tijk (0 6 i < j < k < 4), we write T012 ↔ T013 ↔ T023 ↔ T123 for the

§ The indices suggest the domain and range type of the relations.
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type of the following four operations:

comp3
0 : T012 a01 a02 a12 → T013 a01 a03 a13 → T023 a02 a03 a23 → T123 a12 a13 a13

comp3
1 : T012 a01 a02 a12 → T013 a01 a03 a13 → T123 a12 a13 a13 → T023 a02 a03 a23

comp3
2 : T012 a01 a02 a12 → T023 a02 a03 a23 → T123 a12 a13 a13 → T013 a01 a03 a13

comp3
3 : T013 a01 a03 a13 → T023 a02 a03 a23 → T123 a12 a13 a13 → T012 a01 a02 a12

for all ai : Ai and aij : Rij ai aj .

Next, we define a Kan filler operation that, given the same input as the Kan completion

above, returns a simplex which boundary is the completed horn described in the previous

paragraph.

Definition 4.2. At level 1, given two types A and B, the coherence between a rela-

tion R on A and B, and completion operations (comp1
0, comp

1
1) : A ↔ B, written

Coh(R, comp1) are defined by the following operations:

Comp1
0 : ∀x : A. Rx (comp1

0 x) and Comp1
1 : ∀y : B. R (comp1

1 y) y.

At level 2, given three types, and three types of edges R01, R02 and R12 between these

types, the coherence between a type of triangles T and comp2 a completion operation at

level 2 (R01 ↔ R02 ↔ R12), written Coh(T, comp2) is defined as:

Comp2
0 : ∀a01 :R01 a0 a1.∀a02 :R02 a0 a2. T a01 a02 (comp2

0 a01 a02)

Comp2
1 : ∀a01 :R01 a0 a1.∀a12 :R12 a1 a2. T a01 (comp2

1 a01 a12) a12

Comp2
2 : ∀a02 :R02 a0 a2.∀a12 :R12 a1 a2. T (comp2

2 a02 a12) a02 a12

Note that the conjunction of these two operations at a given level can be reformulated.

To have both comp1 and Comp1 is equivalent to the statement: for any point of A, there

exists a point in B that is related by a relation R to the former point, and conversely for

any point of B, there exists a point in A related by R to the former. At level 2, it says

that for every pair of connected edges, there exists a third edge forming a triangle. And

so on at higher levels.

However, our formulation makes it clear that we have actual operations that builds

the witnesses of the existential statements. The reason for splitting this condition will

appear in the definitions of truncated Kan semisimplicial sets below.

4.2. Small types

Definition 4.3 (Small types). A small type A is a Kan semisimplicial set of level 61.

It consists of the following types and operations:

— a small type of points written simply A when not ambiguous,

— a small type of edges ηAa0 a1 for any a0, a1 : A,

— Kan edge completion comp1 : A↔ A,

— Kan edge filling operation at level 1 Comp1 : Coh(ηA, comp1).

— Kan triangle completion comp2 : ηA↔ ηA↔ ηA.

Note that this truncated version does not require the Kan filling operation at level 2.
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Such a structure can be seen as another presentation of the notion of “proof-relevant”

equivalence relation on a type. This can also be seen as a type-theoretic representation

of Bishop’s notion of set (Bishop 1967; Mines et al. 1988). Let us make more precise

how this definition is equivalent to setoids. First, setoids can be derived from a Kan

semisimplicial set of level 61:

— ηA is a proof-relevant relation, but none of the requirements discriminate between

witnesses of ηAx y; it can be thought of as the equality on the set A, in the sense of

Bishop;

— comp2 implies symmetry and transitivity of ηA, and

— further assuming comp1 and Comp1, we can derive reflexivity of ηA.

Conversely, setoids allow to derive the completion operations above.

However, even though the two notions are mutually derivable, we believe that the Kan

semisimplicial approach provides more uniform notation and generalizes better to higher

dimensions.

From now on, to alleviate the overloading of the term type, setoid will refer to the

structure given in Def. 4.3.

Setoid morphisms are functions from one setoid to another preserving edges.

Definition 4.4 (Type morphisms). Let A and B be two setoids. A morphism from

A to B is a pair of functions (f, ηf) such that

— f a : B for all a : A and

— ηf a01 : ηB (f a0) (f a1) for all a0, a1 : A and a01 : ηAa0 a1.

We proceed to define the notion of equality on setoids. Again, as in Bishop’s interpre-

tation, it can be described as the graph of isomorphisms between the (Bishop) sets A

and B.

Definition 4.5 (Isomorphisms). Let A and B be two setoids. An isomorphism be-

tween A and B is a structure I formed of a relation (written I) such that we have:

— a Kan completion of level 1, comp1 : A↔ B and Comp1 : Coh(I, comp1), and

— two degenerate triangles

η0I : ηA↔ I ↔ I and η1I : I ↔ I ↔ ηB.

The two triangles ensure that the relation respects the equality on both ends of the

relation.

4.3. Contexts

Definition 4.6 (Contexts). A context Γ is a Kan semisimplicial set of level 62. It

consists of all the fields of small types (with the difference that types are not required to

be small), and

— a type of triangles η1ηΓ a01 a02 a12, for all ai : Γ and aij : ηΓ ai aj ,

— Kan triangle filling operations Comp2 : Coh2(η1ηΓ, comp2), and

— Kan tetrahedron completion comp3 : η1ηΓ↔ η1ηΓ↔ η1ηΓ↔ η1ηΓ.
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Note that this truncated version does not require the Kan tetrahedron filling operation.

Context morphisms are functions from one context to another preserving edges and

triangles.

Definition 4.7 (Context morphism). Let ∆ and Γ be two contexts. A morphism

from ∆ to Γ is a triple (f, ηf, η1ηf) such that:

— f ρ : Γ for all ρ : ∆ and

— ηf ρ01 : ηΓ (f ρ0) (f ρ1) for all ρ0, ρ1 : ∆, ρ01 : η∆ ρ0 ρ1.

— η1ηf θ012 : η1ηΓ (ηf ρ01) (ηf ρ02) (ηf ρ12) for all θ012 : η1η∆ ρ01 ρ02 ρ12.

Lemma 4.8. Any setoid can be turned into a context by introducing exactly one triangle

for each triple of connected edges.

4.4. Interpretation of the universe

Theorem 4.9. The semisimplicial set U of level 6 2 where

— the points of U are setoids,

— ηU AB is the set of isomorphisms between A and B,

— η1ηU I01 I02 I12 is I01 ↔ I02 ↔ I12,

satisfies the Kan extension property.

Proof. At level 1, we use the fact that a setoid is isomorphic to itself. Level 2 com-

pletions involve the composition of isomorphisms. Given three setoids A0, A1 and A2,

and two isomorphisms I01, I02, it suffices to compose them and obtain an isomorphism

between A1 and A2. The third level is tedious but straightforward. Given four types, six

morphisms and three triangles, we can form the fourth triangle of the tetrahedron.

4.5. Interpretation of the judgments

The judgment Γ ` of Section 3 is represented in type theory as an expression Γ of the

type of structures of Definition 4.6. The other judgments are described below.

4.5.1. Types Types of a context Γ (written Ty(Γ)) are mappings from Γ to Kan semisim-

plicial types of level 61 (setoids), with additional requirements ensuring that equal con-

texts yield isomorphic setoids, and similarly for triangles. In other words, an element of

Ty(Γ) is simply a context morphism between Γ and U .

Then, a judgment of the form Γ ` A is represented in type theory as an expression A

of type Ty(Γ).

4.5.2. Elements Given a context Γ and a type A : Ty(Γ), an element t of A is a function

that returns an element of Aρ for each element ρ of the context. This function is also

required to map equal contexts to equal elements.

Definition 4.10. Given a context Γ and A : Ty(Γ), an element of A is given by two

functions t and ηt such that:
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— tρ : Aρ for any ρ : Γ,

— ηtρ01 : ηAρ01 (tρ0) (tρ1) for any ρi : Γ and ρ01 : ηΓ ρ0 ρ1.

We define Elt(Γ, A) to be the type of elements of A.

Formally, a judgment of the form Γ ` t : A is represented by an expression t of type

Elt(Γ, A).

4.5.3. Substitutions Substitutions are represented by context morphisms. A judgment

σ : ∆ → Γ is encoded in type theory as a term σ which is a morphism from context ∆

to context Γ.

The construction of the identity morphism and the composition of morphisms justify

the rules
Γ `

1 : Γ→ Γ
and

σ : ∆→ Γ δ : Θ→ ∆

σδ : Θ→ Γ
.

It is also straightforward to derive the rules

Γ ` A σ : ∆→ Γ

∆ ` Aσ
Γ ` t : A σ : ∆→ Γ

∆ ` tσ : Aσ

as a form of composition of A (resp. t) with σ.

Definition 4.11 (Context extension Γ.A). Given Γ a context and A a type of Γ, we

can build a context Γ.A, defined by:

— the type of points of Γ.A is Σρ : Γ. Aρ;

— the edges between two points (ρ0, a0) and (ρ1, a1) is a dependent pair of edges, of

type Σω : ηΓ ρ0 ρ1. ηAω a0 a1;

— a triangle between three edges (ω01, a01), (ω02, a02) and (ω12, a12) is simply a trian-

gle between ω01, ω02 and ω12. This follows the idea that small types are injected in

contexts by equipping them with trivial triangles.

— The Kan operations are defined straightforwardly.

This definition interprets the rule

Γ ` Γ ` A
Γ.A `

The definition of Γ.A suggests that an element of this context can be projected to

obtain either an element of Γ or an element of A, and conversely, an element of Γ.A can

be formed from a context of Γ and an element of A. Hence the definition of p, q and ( , )

is justifying the rules

Γ ` A
p : Γ.A→ Γ

Γ ` A
Γ.A ` q : Ap

σ : ∆→ Γ Γ ` A Γ ` u : Aσ

(σ, u) : ∆→ Γ.A

4.5.4. Definitional equality The definitional equality of WMLTT is interpreted by the

definitional equality of underlying type theory (here Coq) in which we represent this

system. This is the main feature of our interpretation. It is actually difficult to state

precisely in what sense one has an internal model of type theory if these definitional

equalities are not present.
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Note that equalities justified by our model are typed. Although the rules given in

Section 3 are presented in an untyped style, they should actually be presented as a

judgment. More precisely, the equality judgment t = u omits the context and type of

this judgment in the informal notation, but they do appear in the formal presentation,

and some typing premises are required, as we shall see below.

The definitional equality of type theory can be represented within type theory using

the following meta-theoretical result: if t = u is provable by reflexivity, then t and u are

definitionally equal.

The rule p(σ, u) = σ is represented in type theory by the fact that the lemma p(σ, u) =

σ (equation between morphisms from ∆ → Γ) for all σ : ∆ → Γ and u : Elt(Γ, Aσ) is

proved by reflexivity. In the same way, the following equations are proved

σ : ∆→ Γ

1σ = σ : ∆→ Γ σ1 = σ : ∆→ Γ

σ : ∆→ Γ δ : Θ→ ∆ ν : Ψ→ Θ

(σδ)ν = σ(δν) : Ψ→ Γ

σ : ∆→ Γ Γ ` u : Aσ

p(σ, u) = σ : ∆→ Γ ∆ ` q(σ, u) = u : Aσ

σ : ∆→ Γ ∆ ` u : Aσ δ : Θ→ ∆

(σ, u)δ = (σδ, uδ) : Θ→ Γ.A

The latter rule needs (Aσ)δ = A(σδ) to type-check because uδ has (Aσ)δ while it is

expected to have type A(σδ).

We have now fully defined a type theory with explicit substitutions. Next, we introduce

the usual type constructors of MLTT: product and sum types.

4.5.5. Type families This section is dedicated to what corresponds to the notion of family

of sets used in constructive mathematics (Bishop 1967; Mines et al. 1988; Palmgren 2012),

where objects A : U correspond to Bishop sets. A family of setoids indexed by a type A

is written (A)Type.

However, since we need to model expressions with free variables, we also need to

define families in a context Γ. In our model, this needs further definitions, as we need

to explain when two families are isomorphic, and also when three family isomorphisms

form a triangle.

As suggested above, a setoid family indexed by A is simply a context morphism from

A (a setoid viewed as a context) to U .

Definition 4.12 (Setoid family isomorphism). Given an isomorphism I : ηU A0A1

and two setoid families F0 and F1 with Fi indexed by Ai, an isomorphism J between F0

and F1 consists of a triple (J, η0J, η1J) specified by:

— Ja01 is an isomorphism from F0a0 to F1a1 for all ai : Ai and a01 : I a0 a1;

— η0J(a00′ , a01, a0′1) : ηF0a00′ ↔ Ja01 ↔ Ja0′1 for all ai : Ai, a0′ : A0, a00′ : ηA0 a0 a0′

and aij : I ai aj ;

— η1J(a01, a01′ , a11′) : Ja01 ↔ Ja01′ ↔ ηF1a11′ for all ai : Ai, a1′ : A1, a11′ : ηA1 a1 a1′

and aij : I ai aj .
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Quite naturally, three setoid family isomorphisms form a triangle if any triangle in the

index types can be mapped to a triangle in U between the resulting setoid isomorphisms.

Definition 4.13 (Type family triangle). Given three setoids, three isomorphisms

A01, A02 and A12 between them, three families F0, F1 and F2 (with Fi indexed by Ai),

a triple of type family isomorphisms F01, F02 and F12 forms a triangle when we have

F01a01 ↔ F02a02 ↔ F12a12 for all ai : Ai and aij : Aij ai aj .

This condition is indeed equivalent to the fact that two isomorphisms ηF a01 and ηF a′01

are extensionally equal for any two proofs a01, a
′
01 of ηAa0 a1.

Informally, a type family (in a context) should simply be a morphism from the context

to the structure for which we have define the points, edges and triangles. However, since

the index type may depend on its context, we cannot reuse as is the notion of context

morphism. Instead we make a similar definition:

Definition 4.14 (Type families). Given a context Γ, and A : Ty(Γ), a type family

over A is a tuple of functions (F, ηF, η1ηF ) such that:

— Fρ is a context morphism from Aρ to U for any ρ : Γ,

— ηFρ01 is a setoid family isomorphism from Fρ0 to Fρ1 for all ρi : Γ and ρ01 : ηΓ ρ0 ρ1;

the isomorphism between index setoids Aρ0 and Aρ1 is, without surprise, ηAρ01;

— η1ηFρ012 is a setoid family triangle between ηFρ01, ηFρ02a02 and ηFρ12a12 for all

ρi : Γ, ρij : ηΓ ρi ρj and ρ012 : η1ηΓ ρ01 ρ02 ρ12.

We define Fam(Γ, A) as the type of families over A.

The reader should be careful about the ambiguity there may be between the field η1

of ηF and η1ηF . This will be addressed by writing simply η1F for the former (and for

consistency of notations, we will also write η0F ).

In the current setting, a judgment of the form Γ ` F : (A)Type is interpreted by an

expression F of type Fam(Γ, A).

Ideally, following the informal explanation above, type families should be defined in-

dependently of the ambient context Γ: a context F of all setoid families (A)Type would

be defined, and then Fam(Γ, A) would be the set of context morphisms f from Γ to

F such that the index type of fρ is Aρ. This lends itself better to a generalization, as

explained in Section 7. Dealing with the dependency of the index on the context is the

key difficulty.

Definition 4.15 (Type application). Given a family of types F indexed by A in

context Γ and a an element of A, we can define App(F, a), a type which corresponds to

the element of the family at a, by:

App(F, a)ρ = Fρ aρ ηApp(F, a)ρ01 = ηFρ01 ηaρ01

η1ηApp(F, a)ρ012 = η1ηFρ012(ηaρ01, ηaρ02, ηaρ12)

with the usual typing convention.
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This definition interprets the rule

Γ ` F : (A)Type Γ ` a : A

Γ ` App(F, a)

Substitution of type families is defined in the same style as before, and we can prove

that substitution commutes with application:

Γ ` F : (A)Type σ : ∆→ Γ

∆ ` Fσ : (Aσ)Type
App(F, a)σ = App(Fσ, aσ).

Again, this equation is a simplification of the formal result, which requires well-typedness

conditions.

The introduction rule for type families is more tedious and less canonical as it depends

on auxiliary definitions that may be implemented in different ways.

Definition 4.16 (Type-level λ-abstraction). Given a type A in context Γ and a type

B in Γ.A, then we can define λB, a family indexed by A in Γ by:

— λBρa = B(ρ, a)

— η(λBρ)a01 = ηB(ϕ(ρ), ψ(ρ, a01))

— η1η(λBρ)a012 = η1ηB(ϕ′(ρ), (ψ(ρ, a01), ψ(ρ, a02), ψ(ρ, a12)))

— η(λB)ρ01a01 = ηB(ρ01, a01)

— η0(λB)ρ01(a00′ , a01, a0′1) = η1ηB(ϕ0(ρ01), (ψ(ρ0, a00′), a01, a0′1))

— η1(λB)ρ01(a01, a01′ , a11′) = η1ηB(ϕ1(ρ01), (a01, a01′ , ψ(ρ1, a11′)))

— η1η(λB)ρ012(a01, a02, a12) = η1ηB(ρ123, (a01, a02, a12))

with the following auxiliary definitions

— ϕ(ρ) : ηΓ ρ ρ (reflexivity)

— ϕ0(ρ01) : η1ηΓϕ(ρ0) ρ01 ρ01 (degenerate triangle where one edge is the reflexivity)

— ϕ1(ρ01) : η1ηΓ ρ01 ρ01 ϕ(ρ1) (idem)

— ϕ′(ρ) : η1ηΓϕ(ρ)ϕ(ρ)ϕ(ρ) (degenerate triangle where all three edges are reflexivity)

— ψ(ρ, aij) : ηAϕ(ρ) ai aj (remember that aij : η(Aρ) ai aj)

The auxiliary definitions are easily derivable from the Kan completion operations of Γ

up to level 3 (tetrahedron completion), and those of A.

Substitution does not commute with λ-abstraction for reasons similar to what is ex-

plained in Section 1. Nevertheless, the type level β-reduction property can be derived:

App((λB)σ, a) = B(σ, a).

4.6. Interpretation of the product

The goal of this section is to define the interpretation of FunAF , given a context Γ, a

type A : Ty(Γ) and a type family F : Fam(Γ, A). We first deal with the case when there

is no ambient context Γ and define a setoid FunAF : U given a setoid A : U and a family

of setoids F indexed by A. Once we establish that this morphism preserves isomorphisms

and triangles, we can extend the definition of FunAF in a context Γ.

Consider A : U and F a context morphism from A (seen as a context) to U . The type
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of dependent functions from A to F does not always form a setoid: reflexivity fails for

functions that do not map equal objects of A to equal images in F . The obvious fix is to

consider only functions that respect equality.

Lemma 4.17 (Product of setoids). Given A a setoid and F a setoid family indexed

by A, there exists a setoid FunAF : U such that:

— FunAF = Σ(f : Πa : A.Fa).Πa0, a1 : A.Πa01 : ηAa0 a1.ηFa01 (f a0) (f a1),

— η(FunAF ) (f0, f
′
0) (f1, f

′
1) holds when ηFa01 (f0 a0) (f1 a1) for all a0, a1 : A and a01 :

ηAa0 a1.

Proof. Completing the setoid definition is straightforward. The most noticeable fact is

that level 1 composition derives from the second component of the elements of FunAF .

Lemma 4.18 (Isomorphic products). Given an isomorphism A01 : ηU A0A1 and

a setoid family isomorphism F01 (with the usual indexing conventions), there exists an

isomorphism ηFunA01 F01 between FunA0 F0 and FunA1 F1 such that

ηFunA01 F01 (f0, f
′
0) (f1, f

′
1)

produces an object of F01a01 (f0 a0) (f1 a1) for all ai : Ai and a01 : A01 a0 a1.

Proof. We refer to the formal development.

Lemma 4.19. Given three isomorphisms A01, A02, A12 and A012 : A01 ↔ A02 ↔ A12

(a triangle of U), and a setoid family isomorphism triangle F012 between F01, F02 and

F12, then there exists

η1ηFunA012 F012 : FunA01 F01 ↔ FunA02 F02 ↔ FunA12 F12.

Proof. We refer to the formal development.

Definition 4.20 (Product). Given a context Γ, a type A : Ty(Γ) and a type family

F : Fam(Γ, A), we define the type FunAF : Ty(Γ) by:

— (FunAF )ρ = Fun (Aρ) (Fρ)

— η(FunAF )ρ01 = ηFun (ηAρ01) (ηFρ01)

— η1η(FunAF )ρ012 = η1ηFun (η1ηAρ012) (η1ηFη012)

This definition interprets the rules

Γ ` A Γ ` F : (A)Type

Γ ` FunAF
(FunAF )σ = FunAσ Fσ.

As in the case of type level application, the term level application is straightforward:

app(w, u)ρ = π1(wρ)uρ ηapp(w, u)ρ01 = ηwρ01 ηuρ01

where π1 is the first projection of Σ-types.

The term level λ-abstraction is more interesting: one obviously defines the first com-

ponent of the Σ-type by

π1((λb)ρ)a = b(ρ, a),
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but the definition of the second component requires the Kan completion operations of

the domain and co-domain types. The level 2 part of λb is easy:

η(λb)ρ01a01 = ηb(ρ01, a01).

These definitions interpret the following typing rules:

Γ ` w : FunAF Γ ` u : A

Γ ` app(w, u) : App(F, u)

Γ.A ` b : App(Fp, q)

Γ ` λb : FunAF

λ-expressions.

4.7. Interpretation of sum types

The definition of sum types follows the same scheme as for the product types. It is

nonetheless more straightforward, since the dependent sum of a setoid with a family of

setoids does form a setoid. An isomorphism between two sum types is defined as a pair of

an isomorphism between the first components, and a type family isomorphism between

the second components, and similarly for the triangles.

Given a setoid A and a setoid family F in A, the setoid SumAF : U is defined as:

— SumAF = Σ(a : A).Fa

— η(SumAF ) (a0, b0) (a1, b1) = Σ(a01 : ηAa0 a1).ηF a01 b0 b1

The isomorphism ηSumA01 F01 between SumA0 F0 and SumA1 F1 is defined as:

ηSumA01 F01 (a0, b0) (a1, b1) = Σ(a01 : A01 a0 a1).F01a01 b0 b1

All other requirements are fulfilled without surprise.

Last auxiliary definition is the triangle

η1ηSumA012 F012 : SumA01 F01 ↔ SumA02 F02 ↔ SumA12 F12

given two triangles A012 and F012.

Definition 4.21 (Sum). Given a context Γ, a type A : Ty(Γ) and a type family F :

Fam(Γ, A), we define SumAF : Ty(Γ) as:

— (SumAF )ρ = Sum (Aρ) (Fρ)

— η(SumAF )ρ01 = ηSum (ηAρ01) (ηFρ01)

— η1η(SumAF )ρ012 = η1ηSum (η1ηAρ012) (η1ηFρ012)

The constructors and projections of sum types are defined by

(a, b)ρ = (aρ, bρ)

η(a, b)ρ01 = (ηaρ01, ηbρ01)

pcρ = π1(cρ)

ηpcρ01 = π1(ηcρ)

qcρ = π2(cρ)

ηqcρ01 = π2(ηcρ)

The following definitional equalities hold:

(SumAF )σ = SumAσ Fσ (a, b)σ = (aσ, bσ) (pc)σ = p(cσ) (qc)σ = q(cσ)

Our model validates both equalities p(a, b) = a and q(a, b) = b. This is not the case for

the model described in (Hofmann 1994) (which on the other hand validates the rule of



A Generalization of the Takeuti-Gandy Interpretation 21

substitution under abstraction, but it is not clear if this model can be formulated in an

internal way). Other attempts to explain function extensionality (Altenkirch 1999; Al-

tenkirch et al. 2007) use extensions of Type Theory. Our model is close to Erik Palmgren’s

representation of Bishop sets in dependent type theory (Palmgren 2012), but we have a

different representation of function spaces which interprets more definitional equalities.

5. Applications of the model

We have a direct representation of (×) : U ×U → U and (→) : U ×U → U . For instance

A → B is the type of extensional functions between A and B. If P : ηU P0 P1 and

Q : ηU Q0 Q1 then P → Q represents the relation (P → Q) f0 f1 which holds exactly

when P x0 x1 implies Q (f0 x0) (f1 x1). This is then a graph of an isomorphism between

the sets P0 → Q0 and P1 → Q1. We can define as well the operations (↔) : U ×U → U .

All the applications we present have been formally verified in the system Coq V8.4.

5.1. A small type of propositions

This subsection can be seen as a generalization of Russell’s work on implication (Russel

1906). We assume that the type theory we are working with has at least two universes

Type0,Type1 (as introduced in (Martin-Löf 1973)). We define U to be Type1.

We define Ω = Type0 and ηΩ X0 X1 to be the type X0 ↔ X1.

We define a semisimplicial map T : Ω→ U by taking

T X = X, ηT h x0 x1 = N1

where N1 is the unit type. This interprets the rule

Γ ` a : Ω

Γ ` T a

If X is Kan semisimplicial set we define eqX : X ×X → Ω. We take eqX a u to be the

type η X a u. If P : ηU X Y and we have P a b and P u v then eqX a u and eqY b v

are logically equivalent. We define then EqX a u to be the type T (eqX a u).

It is then possible to show that ∏
a:X

∏
u:X

EqX a u

is provable in this model if, and only if, any two elements of X are related by the equality

relation ηX. Furthermore, the type Ω satisfies the following weak form of univalence.

Proposition 5.1. In the model, the following type is inhabited∏
a:Ω

∏
u:Ω

(T a↔ T u)→ EqΩ a u

This model interprets also the operation of quotient. If X is a type and we have a

relation R : X ×X → Ω which is an equivalence relation in the model then it is possible

to define a new type X/R with an operation a 7−→ [a], X → X/R, such that EqX/R [a] [u]

is equal to R a u.
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We interpret existential quantification in the following way. The rules are

Γ ` A Type0 Γ ` ϕ : A→ Ω

Γ ` ∃ϕ : Ω

with introduction rule

Γ ` A Type0 Γ ` ϕ : A→ Ω Γ ` a : A Γ ` p : T (app(ϕ, a))

Γ ` (a, p) : T (∃ϕ)

and elimination rule

Γ ` u : T (∃ϕ) Γ ` ψ : Ω Γ.A ` v : T (app(ϕp, q))→ Tψp

Γ ` E u v : T (ψ)

and computation rule E (a, p) v = app(va, p).

Here is the interpretation of ∃ϕ. If ρ : Γ[0] we define (∃ϕ)ρ to be the set of pairs

u, p with u : Aρ and p : app(ϕρ, u). If α : Γ[1] with diα = ρi we have to show the

logical equivalence of (∃ϕ)ρ0 and (∃ϕ)ρ1. This follows from the fact that Aα is a relation

between Aρ0 and Aρ1 satisfying the Kan condition and that ϕα shows that app(ϕρ0, u0)

and app(ϕρ1, u1) are logically equivalent if u0 : Aρ0 and u1 : Aρ1 are related by Aα.

5.2. Isomorphisms of setoids

Using a notation with variables for readability, our model interprets contexts of the form

X : U or X : U, Y : U with variable ranging over small Kan semisimplicial types. For

instance, we can interpret the judgment

X : U ` (X → X)×X

or

X : U ` Σ(f, a) : (X → X)×X.EqX (f a) a

which intuitively represents the structure of having an endofunction with a fixpoint over

a set X. If we have such a judgment X : U ` T (X) we can use our model and compute

for any given set A a corresponding set T (A). In this model X : U ` T (X) is interpreted

by a function U → U . We can thus use this interpretation to transform any graph of

an isomorphism P : ηU A B between two sets A and B to a graph of an isomorphism

between T (A) and T (B). In particular, in a case like

X : U ` (X → X)×X

this allows us to transport any structure on A to a structure on B, and in a case like

X : U ` Σ(f, a) : (X → X)×X.EqX (f a) a

this shows that any proof of a property on a structure on A (to be a fixpoint) can be

transported to a proof of the corresponding property on the isomorphic structure B. We

can cover in this way examples similar to the ones in (Licata and Harper 2012) but also

with computations on open terms.

We have another stronger form of univalence in this model, which transforms any

isomorphism between two sets to a proof that these two sets are equal.
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Proposition 5.2. If f : A→ B is an isomorphism between the (Bishop) set A and the

(Bishop) set B, the relation P (a, b) defined by ηB (f a) b is the graph of the isomorphism

and we have that P : U [1].

6. The semisimplicial set model

Before presenting the universe of Kan semisimplicial sets, we describe the (simpler)

semisimplicial set model of type theory. This model justifies all the rules of Figure 2.

We let ∆mon be the category of objects of the form [n] and the morphism are injective

monotone maps. We have an inclusion i : ∆mon → ∆. A semisimplicial set is a presheaf

on ∆mon i.e. a functor in [∆op
mon,Set].

We define a semisimplicial set W, which represents the universe of (small) semisimpli-

cial sets. An element of W[n] is a family of sets Af indexed by f : [m] → [n] injective,

with maps Af → Afg, u 7−→ ug for g : [p] → [m] injective such that u = u1 : Af and

ugh = (ug)h : Afgh. If A : W[n] and g : [m] → [n] is injective we have Ag : W[m] by

(Ag)h = A(gh). If A : W[n] we may write the set A1 simply as A.

A context Γ is interpreted by a semisimplicial set, so we have a collection of sets Γ[n]

and functions Γ[n] → Γ[m], ρ 7−→ ρf for any f : [m] → [n] injective, with ρ1 = ρ : Γ[n]

and ρfg = ρ(fg) : Γ[p] if g : [p] → [m] is injective. A substitution σ : ∆ → Γ is

interpreted by a function σρ : Γ[n] for ρ : ∆[n] in such a way that (σρ)f = σ(ρf) : Γ[m]

if f : [m]→ [n] is injective.

A judgment Γ ` A will be interpreted by giving Aρ : W[n] for any ρ : Γ[n] in such a

way that Aρf = A(ρf) if f : [m] → [n] is injective. If Γ ` A we define (Γ.A)[n] to be

the set of pairs ρ, u with ρ : Γ[n] and u : Aρ and (ρ, u)f = (ρf, uf) if f : [m] → [n] is

injective. A judgment Γ ` F : (A)Type is interpreted by giving Fρ : (Aρ)Type for any

ρ : Γ[n] in such a way that App(Fρf, uf) = App(Fρ, u)f : W[m] for any u : Aρ and any

f : [m]→ [n] injective.

A judgment Γ ` t : A is interpreted by giving an element tρ : Aρ for each ρ : Γ[n] in

such a way that tρf = t(ρf) : Aρf if f : [m]→ [n] is injective.

7. A Universe of Kan semisimplicial sets

7.1. General lemmas about semisimplicial sets

We let I, J,K, . . . denote nonempty finite linear orders. If I is such a nonempty finite

linear order, it is isomorphic exactly to a unique [n] in a unique way. We define W(I)

to be W[n]. If P is in W(I) and f : J → I is an injection it corresponds to exactly one

injection g : [m] → [n] and we define Pf to be Pg and the map u 7−→ uf, P → Pf

to be the map u 7−→ ug. If f is an inclusion, we may write P (J) instead of Pf and

similarly u(J) instead of uf. If a is an element of I and f is the inclusion (I − a) → I

we may write ∂aP instead of Pf and similarly ∂au instead of uf if u : W(I). Note that

we leave I implicit as it can be inferred from the context u : W(I). This deviates from

the usual notation for face maps but is more convenient for what follows. Note that the

semisimplicial identities become ∂a∂b = ∂b∂a for a 6= b elements of I. We will sometimes
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decompose a linear order and write e.g. I = a, L,M ; by convention, comma binds weaker

than minus, so L− b,M is (L− b),M .

For instance if P : W[1] we have three sets P = P1 and P (0) and P (1) and two maps

u 7−→ u(0), P → P (0) and u 7−→ u(1), P → P (1). We also have P (0) = ∂1P and

P (1) = ∂0P .

If J ⊆ I and a is an element of J , we can define P (Λa(J)) as the set of compatible

families ub : ∂bP (J) for b 6= a, i.e. such that ∂cub = ∂buc for b, c distinct from a. We have

a canonical map P (J) → P (Λa(J)). We say that P is in V(I) iff each canonical map

P (J)→ P (Λa(J)) has a section.

If L is a nonempty subset of I and P : W(I) we define a L-compatible family of P to

be a family of elements ub : P (I − b) for each b in L such that ∂cub = ∂buc for all b and

c in L. We say that P has compositions iff for any a not in L and a, L,M ⊆ I we have

an operation comp u : P (L,M) which takes a L-compatible family ub : P (a, L − b,M)

and produces an element ua = comp u : P (L,M) satisfying ∂bua = ∂aub for all b in

L. Furthermore all these operations should be compatible, in the sense that we have

∂c(comp u) = comp (∂c ◦ u) for all c in M , where we write ∂c ◦ u for the family ∂cub :

P (a, L− b,M − c) with b in L.

A stronger notion is to have extension operations. Given a compatible family of el-

ements ub : P (L − b, a,M) these operations produce an element u = Comp(ub) in

P (L, a,M). This element should satisfy ∂bu = ub : P (L − b, a,M) for all b in L, and

we should have ∂cu = Comp(∂cub) : P (L, a,M − c) for all c in M . If P has extension

operations, then it also has composition operations by defining comp = ∂aComp. To have

extension operations for P in W(I) is a priori a stronger condition than being in V (I),

by taking L = I − a. However the two properties are actually equivalent.

Lemma 7.1. If P : V(I) then P has extension operations, and hence has compositions.

Proof. Given a compatible family ub : P (L− b, a,M), b ∈ L , we define the extension

u : P (L, a,M) by induction on the cardinality of M . By induction we have defined the

extensions uc : P (L, a,M − c) of all the ∂cub’s for each c in M in a compatible way. We

use then the Kan extension operation to define u : P (L, a,M) such that ∂bu = ub for all

b in L and ∂cu = uc for all c in M .

Here is a special case of Lemma 7.1.

Corollary 7.2. If P : V(I) and a, b are two elements of I there exists an operation

Ext u : P (a, b,M) which takes an element u : P (b,M) and satisfies ∂aExt u = u and

∂cExt u = Ext ∂cu for all c in M .

To have composition operations can be seen as a generalization of the notion of par-

tial equivalence relations, while to have extension operations generalizes the notion of

equivalence relations.

One basic example of composition is the composition of two binary relations. The next

result generalizes this notion. We say that a semisimplicial set X has composition iff for
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any nonempty finite linear order I and any a not in L and a, L ⊆ I we have an operation

comp u : X(I − a) which takes a L-compatible family ub : X(I − b) and produces an

element ua = comp u : X(I−a) satisfying ∂bua = ∂aub for all b in L. Furthermore all these

operations should be compatible, in the sense that we have ∂c(comp u) = comp (∂c ◦ u)

for all c in I− (a, L), where we write ∂c ◦u for the family ∂cub : X(I− (b, c)) with b in L.

Lemma 7.3. The semisimplicial set W has compositions.

Proof. Assume given a, L subset of I and a compatible family Qb : W(I− b) for b in L.

We define Qa = comp (Qb) : W(I − a). An element of Qa is a compatible family v = (ub)

where ub : Qb for b in L, i.e. a family satisfying ∂cub = ∂buc for all b, c in L. We define

then ∂cv to be the family ∂cub, b : L for c in I − (L, a) and ∂bv to be ∂aub for b in L.

In the case n = 2 and I = J = 0, 1, 2 and a = 1 we get back the usual notion of

composition of relations.

Lemma 7.4. The semisimplicial set V is closed under the compositions of W.

Proof. To simplify the notation, we describe the argument in the case where we com-

pose P : V(01M) and Q : V(02M) obtaining a relation R : W(12M). An element in R is

a pair u(01M), v(02M) such that u(0M) = v(0M) and we have

∂1(u, v) = v(2M) ∂2(u, v) = u(1M)

and ∂b(u, v) = ∂bu, ∂bv for all b in M . We show that R is in V (12M). We have three

cases.

The first case is if we have a in M and we have a compatible family consisting of an

element (ub, vb) in R(12Mb) for all b in Ma = M−a and we have an element v0 in Q(2M)

and an element u0 in P (1M). We have a compatible family ub in P (01Mb) for b 6= a and

u0 in P (1M). By Lemma 7.1 we can find u : P (01M) such that ∂0u = u0 and ∂bu = ub
for all b in M − a. The family consisting of vb : Q(02Mb) for b in M − a and v0 : Q(2M)

and u(0M) : P (0M) = Q(0M) is then compatible and since Q : V(02M) we can find

v : Q(02M) such that ∂bv = vb for b in M − a and ∂0v = v0 and v(0M) = u(0M). The

element u, v in R(12M) is the required filling.

The second case is if we have a compatible family consisting of an element ub, vb in

R(12Mb) for each b in M and an element u0 in P (1M). Since the family ub : P (01Mb)

and u0 : P (1M) is compatible and P : V(01M) we find a filling u : P (01M). We have

then a compatible family vb : Q(02Mb) and u(0M) : P (0M) = Q(0M). Since Q : V(02M)

we have a filling v : Q(02M). The element u, v in R(12M) is the required filling.

The third case is if we have a compatible family consisting of an element ub, vb in

R(12Mb) for each b in M and an element v0 in Q(2M). This case is similar to the second

case.

The inclusion i : ∆mon → ∆ defines a functor i∗ : [∆op,Set]→ [∆op
mon,Set] which has a

right adjoint iR : [∆op
mon,Set]→ [∆op,Set]. If X is a semisimplicial set, iRX[n] is the set of

all natural transformations i∗∆n → X, where ∆n is the simplicial set represented by [n].

More concretely, iRX[n] is the set of families uf : X[m] for f : [m]→ [n] monotone (but
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not necessarily strictly monotone) such that ufg = ufg : X[k] whenever g : [k] → [m] is

strictly monotone.

If X is a semisimplicial set, then each restriction X(I) defines an element of W(I).

A Kan semisimplicial set is a semisimplicial set Y such that each restriction Y (I) is in

V(I).

The next lemma generalizes what happens in Section 3. The basic case is to define the

degenerates of a composition of two lines as a composition of three triangles.

Lemma 7.5. If the semisimplicial set X has compositions then iRX is a Kan simplicial

set.

Proof. To simplify the notations, we consider only the case where we have compatible

u2 : Y (01) and u1 : Y (02) and we explain how to build the extension u : Y (012). We

give an algorithm for computing uf : X(I) for any map f : I → 012 such that we have

ufi = u(fi) for strictly monotone i : J → I. We let z1 < · · · < zn < a1 < · · · < ap <

b1 < · · · < bq be I, with f(zi) = 0 and f(aj) = 1 and f(bk) = 2. The definition is by

induction on p + q. We first treat the case p = 0 or q = 0 separate; if p = 0, i.e. 1 is

not in the image of f , we can write f = ∂1f
′ for a uniquely determined f ′ : I → 02, and

define uf = u1f
′. Note that by the uniqueness of the decomposition and fi = ∂1f

′i we

have u(fi) = u1f
′i, and thus u(fi) = ufi. Similarly, if q = 0, we write f = ∂2f

′ and

set uf = u2f
′. Note that if both p = q = 0, we have f = ∂1∂2f

′′ for some f ′′, and then

∂1u2 = ∂2u1 yields u2(∂1f
′′) = u1(∂2f

′′), and hence both definitions of uf coincide.

In case both p and q are 6= 0, we consider the linear order J obtained by adding

one element z exactly before a1. Let f ′ : J → 012 be the extension of f defined by

f ′(z) = 0. Let f1 be the restriction of f ′ on J1 = J − ap and f2 be the restriction of f ′

on J2 = J − bq. By induction hypothesis, the elements uf1 : X(J1) and uf2 : X(J2) are

defined and are compatible since ∂z(uf1) = u(f1∂z) = u(f2∂z) = ∂z(uf2). We define uf

to be their composition. In order to check (uf)i = u(fi) for injective i, we distinguish

cases: in case 1 or 2 are not in the image of i, say 1, we have that i = ∂1i
′ and thus

(uf)i = (∂z(uf1))i′ = u(f1∂zi
′) = u(f∂1i

′) = u(fi). Otherwise, we can assume i = ∂0;

by the compatibility condition for compositions, ∂0(uf) is the composition of ∂0(ufν)

(for ν = 0, 1), and ∂0(ufν) = u(fν∂0); using fν∂0 = (f∂0)ν yields that this composition

is u(f∂0) by definition.

It remains to check ∂1u = u1 and ∂2u = u2. But (∂1u)f = u(∂1f) = u1f , and similarly

for the other face.

7.2. Interpretation of the universe

We define U to be the semisimplicial set i∗iRV. So an element of U [n] is a natural

transformation i∗∆n → V.

Theorem 7.6. U is a Kan semisimplicial set.

Proof. This follows from Lemma 7.4 and 7.5.
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To give an element of U [n] is to give a family of sets P = (Pf ) indexed by f : [m]→ [n]

together with restriction maps Pf → Pfg, u 7−→ ug for g : [p]→ [m] injective, satisfying

u1 = u and (ug)h = u(gh). Furthermore, for any f the family Pfg, g : [p]→ [m] defines

an element Pf of V[m]. We write u : P for u : P1. There is a canonical map i∗U → V.

7.3. Equivalence and equality

We explain how to use our interpretation to transform any equivalence ϕ : A → B

between two Kan semisimplicial sets to a proof of equality of A and B in U . More

generally we explain how to transform any map ϕ : A → B between two semisimplicial

sets into an element E(ϕ) of i∗iRW[1]. This element E(ϕ) can be thought of as the graph

of the map ϕ. If A and B are Kan semisimplicial and ϕ is an equivalence than E(ϕ) is

in i∗iRV[1] = U [1].

We have to define for each f : [m] → [1] a set E(ϕ)f together with restriction maps

E(ϕ)f → E(ϕ)fg if g : [p] → [m] is injective. An element f : I → [1] is either the

constant 0, or the constant 1 or is 0 on an initial segment I0 and 1 on I − I0. We define

E(ϕ)f as follows

1 if f is the constant function 0 then E(ϕ)f = A(I)

2 if f is the constant function 1 then it is E(ϕ)f = B(I)

3 if f is 0 on I0 and 1 on I − I0 then E(ϕ)f is the set of pairs (u, v) with u in A(I0)

and v in B(I) such that v(I0) = ϕu.

If we have g : J → I which is injective and w in E(ϕ)f we define wg in E(ϕ)fg. If gf is

0 we have w = u in A(I) or w = (u, v) with u in A(I0) and we take wg = u(J). If gf is 1

we have w = v in B(I) or w = (u, v) with u in A(I0) and we take wg = v(J). Otherwise,

we can write g = g0 + g1 : J0 + J1 → I0 + I1 with I1 = I − I0, J1 = J − J0 and we take

wg = (u(J0), v(J)). We define in this way an element E(ϕ) in iRW[1].

Definition 7.7. A Kan semisimplicial set A is contractible iff for any finite linear order

I, given any compatible family of elements ub : A(I − b) for b in I there exists u : A(I)

such that u(I − b) = ub for all b in I.

This definition implies, in the case where I is empty, that A[0] is nonempty if A is

contractible.

Given a map ϕ : A → B and b in B[0] we define the homotopy fiber at b to be the

following semisimplicial set F : an element of F (I) is a pair α, β where α : A(I) and

β : B(I, u) with β(I) = ϕα and β(u) = b and i < u for all i in I. A map ϕ : A → B

between Kan semisimplicial set is an equivalence if all its homotopy fibers are contractible.

The following result can be seen as a generalization of Proposition 5.2.

Proposition 7.8. If A and B are Kan semisimplicial set and ϕ : A→ B is an equivalence

then E(ϕ) is in i∗iRV[1] = U [1].

Proof. We show that any horn in E(ϕ)f, f : [n]→ [1] can be filled. If f is the constant

function 0 this follows from the fact that A has the Kan filling property. If f−1(1) has
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more than one element, this follows from the fact that B has the Kan filling property.

The remaining case is if f−1(1) is a singleton. For instance, for n = 3 we are given

a(0), a(1), a(2) in A[0] and b(3) in B[0] and we have a(i, j) in A[1] and b(i, j, 3) in B[2]

such that b(i, j) = ϕa(i, j) for i < j < 3. The problem is to find an extension b(0, 1, 2, 3)

in B[3] and a(0, 1, 2) in A[3] such that b(0, 1, 2) = ϕa(0, 1, 2). This follows from the fact

that the homotopy fiber at b(3) is contractible and from Definition 7.7.

Conclusion

Using cubical sets instead of simplicial sets, it is possible to give a model of type theory

satisfying univalence (Bezem et al. 2013). In these two models, the Kan semisimplicial

set and cubical set model, the Kan filling operations for the universe and the way to

transform an equivalence in an equality between types have very similar justifications.

The rough idea is that equalities between types can be seen as graph of “isomorphisms”,

and we can use composition of relations to compose these equalities. Compared to the

work on cubical sets, the present work can be carried out internally for truncated levels.

However, these partial internal interpretations fail to justify the rule of substitution

under an abstraction. The question raised by this work is if it is possible to have an

interpretation which justifies this rule as well.
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