
Thesis for the Degree of Doctor of Philosophy

Cubical Interpretations of
Type Theory

Simon Huber

Department of Computer Science and Engineering
University of Gothenburg
Gothenburg, Sweden 2016

Cubical Interpretations of Type Theory

Simon Huber

c© 2016 Simon Huber

Technical Report 134D
ISBN 978-91-629-0007-6 (Print)
ISBN 978-91-629-0008-3 (PDF)
Department of Computer Science and Engineering
Programming Logic Research Group

Department of Computer Science and Engineering
University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31 772 1000

Printed at Chalmers Reproservice
Göteborg, Sweden 2016

Abstract

The interpretation of types in intensional Martin-Löf type theory as spaces and
their equalities as paths leads to a surprising new view on the identity type:
not only are higher-dimensional equalities explained as homotopies, this view
also is compatible with Voevodsky’s univalence axiom which explains equality
for type-theoretic universes as homotopy equivalences, and formally allows to
identify isomorphic structures, a principle often informally used despite its
incompatibility with set theory.

While this interpretation in homotopy theory as well as the univalence ax-
iom can be justified using a model of type theory in Kan simplicial sets, this
model can, however, not be used to explain univalence computationally due to
its inherent use of classical logic. To preserve computational properties of type
theory it is crucial to give a computational interpretation of the added con-
stants. This thesis is concerned with understanding these new developments
from a computational point of view.

In the first part of this thesis we present a model of dependent type theory
with dependent products, dependent sums, a universe, and identity types,
based on cubical sets. The novelty of this model is that it is formulated in a
constructive metatheory.

In the second part we give a refined version of the model based on a varia-
tion of cubical sets which also models Voevodsky’s univalence axiom. Inspired
by this model, we formulate a cubical type theory as an extension of Martin-Löf
type theory where one can directly argue about n-dimensional cubes (points,
lines, squares, cubes, etc.). This enables new ways to reason about identity
types. For example, function extensionality and the univalence axiom become
directly provable in the system. We prove canonicity for this cubical type
theory, that is, any closed term of type the natural numbers is judgmentally
equal to a numeral. This is achieved by devising an operational semantics and
adapting Tait’s computability method to a presheaf-like setting.

iv

The present thesis is based on the following publications:

1. Marc Bezem, Thierry Coquand, and Simon Huber, A model of type the-
ory in cubical sets, 19th International Conference on Types for Proofs
and Programs (TYPES 2013) (Dagstuhl, Germany) (Ralph Matthes and
Aleksy Schubert, eds.), Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 26, Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2014, pp. 107–128.

2. Simon Huber, A model of type theory in cubical sets, Licentiate thesis,
University of Gothenburg, 2015.

3. Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg, Cu-
bical type theory: a constructive interpretation of the univalence axiom,
to appear in the post-proceedings of the 21st International Conference
on Types for Proofs and Programs (TYPES 2015).

4. Simon Huber, Canonicity for cubical type theory, arXiv:1607.04156v1
[cs.LO], 2016.

https://arxiv.org/abs/1607.04156
https://arxiv.org/abs/1607.04156

Acknowledgments

First and foremost I want to thank my supervisor Thierry Coquand for his con-
tinuous guidance and support, and for our countless discussions which taught
me so much and which not infrequently started as innocent questions next to
the coffee machine and ended hours later with a densely filled whiteboard. I
am also grateful to Nils Anders Danielsson for being my co-supervisor and for
helping me out during the time Thierry was in Princeton.

My gratitude to Andy Pitts for accepting the role of the faculty opponent,
and to the members of my grading committee (and the backup!): Bob Harper,
Milly Maietti, Dave Sands, and Jan Smith.

I want to thank all my former and current office mates Víctor López Juan,
Bassel Mannaa, Guilhem Moulin, Anders Mörtberg, Fabian Ruch, and Andrea
Vezzosi not only for all the discussions at the coffee machine, in the sauna, and
wherever, but also for being great friends. I am also grateful to the members
of the Programming Logic group, and especially thanks to Peter Dybjer for
sharing his knowledge on the history of type theory and for our discussions on
higher inductive types which made the day we were stuck at several airports
pass very quickly. I am also grateful to all my other colleagues and friends at
the department for providing such a nice and friendly environment!

I also want to thank Helmut Schwichtenberg, one of my mentors in Mu-
nich, who helped me to find my PhD position in Gothenburg, and my former
colleagues and friends at the LMU.

Over the years I have also benefited a great deal from discussions with nu-
merous people: Thorsten Altenkirch, Carlo Angiuli, Jean-Philippe Bernardy,
Marc Bezem, Guillaume Brunerie, Cyril Cohen, Martín Escardó, Kuen-Bang
Hou (Favonia), Marcelo Fiore, Fredrik Nordvall Forsberg, Ambrus Kaposi,
Peter LeFanu Lumsdaine, Dan Licata, Andrew Polonsky, Christian Sattler,
Peter Schuster, Bas Spitters, Andrew Swan, Chuangjie Xu, the members of
the “cubical seminar” at the IHP, and everyone else I forgot to mention in this
long list—thanks!

For their constant support I want to thank my family and my friends,
and especially my nephews for their cheerfulness. Many thanks also to Sofie
Kindahl for always being there for me!

vi

Contents

Introduction 1
1 Intuitionistic Type Theory . 1
2 Equality . 2
3 Homotopy Theory and Type Theory 5
4 Computational Hurdles . 7
5 This Thesis . 8

5.1 A Model of Type Theory in Cubical Sets 9
5.2 Cubical Type Theory: A Constructive Interpretation of

the Univalence Axiom 10
5.3 Canonicity for Cubical Type Theory 11

6 Statement of Personal Contribution 11

I A Model of Type Theory in Cubical Sets 13

Introduction 15

1 Semantics of Martin-Löf Type Theory 21
1.1 Categories with Families . 21
1.2 Presheaf Models of Type Theory 26

1.2.1 Dependent Products . 28
1.2.2 Dependent Sums . 30
1.2.3 Identity Types . 30
1.2.4 Universes . 30

2 Cubical Sets 33
2.1 The Cubical Category . 33
2.2 Cubical Sets . 35
2.3 Cubical Sets via Nominal Sets 39
2.4 Separated Products . 41

3 Kan Cubical Sets 43
3.1 The Uniform Kan Condition . 43
3.2 The Kan Cubical Set Model . 50
3.3 Identity Types . 55

viii Contents

3.3.1 Functional Extensionality 58
3.3.2 Path Application . 59
3.3.3 Heterogeneous Identity Types 60

3.4 Regular Kan Types . 60
3.5 Kan Completion . 62

4 The Universe of Kan Cubical Sets 65

5 Conclusion 79

II Cubical Type Theory 83

6 Cubical Type Theory: A Constructive Interpretation of the
Univalence Axiom 85
6.1 Introduction . 85
6.2 Basic Type Theory . 86
6.3 Path Types . 89

6.3.1 Syntax and Inference Rules 89
6.3.2 Examples . 91

6.4 Systems, Composition, and Transport 92
6.4.1 The Face Lattice . 92
6.4.2 Syntax and Inference Rules for Systems 94
6.4.3 Composition Operation 96
6.4.4 Kan Filling Operation 97
6.4.5 Equality Judgments for Composition 97
6.4.6 Transport . 98

6.5 Derived Notions and Operations 98
6.5.1 Contractible Types . 98
6.5.2 The pres Operation . 99
6.5.3 The equiv Operation . 99

6.6 Glueing . 99
6.6.1 Syntax and Inference Rules for Glueing 100
6.6.2 Composition for Glueing 101

6.7 Universe and the Univalence Axiom 102
6.7.1 Composition for the Universe 102
6.7.2 The Univalence Axiom 103

6.8 Semantics . 104
6.8.1 The Category of Cubes and Cubical Sets 104
6.8.2 Presheaf Semantics . 105
6.8.3 Interpretation of the Syntax 110

6.9 Extensions: Identity Types and Higher Inductive Types 113
6.9.1 Identity Types . 113
6.9.2 Higher Inductive Types 115

6.10 Related and Future Work . 117

ix

Appendices 119
6.A Details of Composition for Glueing 119
6.B Univalence from Glueing . 122
6.C Singular Cubical Sets . 123

7 Canonicity for Cubical Type Theory 125
7.1 Introduction . 125
7.2 Reduction . 126
7.3 Computability Predicates . 131
7.4 Soundness . 143
7.5 Extending with the Circle . 162
7.6 Conclusion . 163

Bibliography 165

x

Introduction

The recently discovered connection between Martin-Löf’s intuitionistic theory
of types and the seemingly unrelated field of homotopy theory sheds new light
on the treatment of equality in type theory. In particular, Voevodsky’s univa-
lence axiom explains the equality for type-theoretic universes and has many
useful consequences for the encoding of mathematics in type theory. The
present thesis investigates the problem of giving a computational justification
of this new development.

We will now give a brief overview of intuitionistic type theory and its
notions of equality, the relation of type theory with homotopy theory and
the univalence axiom, continuing with discussing the problem of justifying
this axiom computationally, and explain how this problem is addressed in the
remainder of this thesis.

1 Intuitionistic Type Theory
The intuitionistic theory of types [62, 59, 60, 61] was devised by Martin-Löf as a
formal logical system and philosophical foundation for constructive mathemat-
ics. It is based on the propositions-as-types interpretation, which identifies a
proposition with the type of its proofs; intuitionistic type theory extends this
interpretation—also referred to as Curry-Howard correspondence—to predi-
cate logic using the crucial ingredient of dependent types, that is, types which
may depend on terms. It internalizes the Brouwer-Heyting-Kolmogorov expla-
nation of the logical connectives.

A distinct feature of Martin-Löf’s theory of types is that it may as well
be viewed as a typed functional programming language, much in the style of
Haskell or the ML family of languages and is thus also of particular interest
from the perspective of computer science. Viewed as a programming language
it has two important aspects: (1) All programs terminate. (2) It has a very
expressive type system which allows to precisely state a formal specification
(task) of a program; thus synthesizing a program and proving its correctness
can be done at the same time and in the same framework.

Such a formal system based on dependent types was also independently
proposed by de Bruijn [32] in his pioneering work on the proof checker Au-
tomath beginning in the late sixties. Also today, intuitionistic type theory is

2 Introduction

the basis of many of the current proof assistants such as Agda, Nuprl, and Coq
(the latter based on the related Calculus of Constructions by Coquand and
Huet [30]). As such it has been used successfully in mechanizing large-scale
proofs like the Four Color Theorem [41] and the Feit-Thompson Theorem [42]
from group theory.

2 Equality
One particularly intricate concept of intuitionistic type theories is equality.
Indeed the treatment of equality was one of the important components which
changed during the various different formulations of intuitionistic type theory.
There are two key notions of equality in type theory.

First, each of the different formulations of type theory comes with some
form of judgmental equality. In the modern formulations of type theory this is
presented as the two judgments

A = B,

a = b : A,

reading as A and B are equal types, and a and b are equal objects of type A,
respectively. These are additionally to the other judgments of type theory: A
is a type, and a : A, that is, a is of type A. The equality judgments enter
the typing judgments by the crucial type conversion rule: from a : A and
A = B we can derive a : B. This rule is required to get the very dynamics
of dependent types to work, see, for example, the motivation given in [59,
p. 86]. This judgmental equality is sometimes given as a definitional equality,
that is, equality up to the unfolding of definitions;1 often this notion is deeply
connected with the computational aspects of type theory.

Judgmental equality is however a judgment of type theory and as such does
not appear as a type itself. This role is taken by the second notion of equality,
the identity type: given a type A and a and b of type A, the identity type
IdA(a, b) serves as type of proofs witnessing that a and b are identical. By the
propositions-as-types interpretation, the identity type is thus often referred to
as propositional equality. It is also the prime example of a dependent type.

Martin-Löf formulated two main variations of the identity type, the inten-
sional identity type from [59], and the “extensional” identity type from [60, 61].
In the latter one has the so-called equality reflection rule: from a proof of
IdA(a, b) one can deduce that a and b are judgmentally equal, that is, a = b : A.
This equality reflection rule, however, destroys the decidability of judgmental
equality, and henceforth also the decidability of type checking—resulting in a
formal system where for a given syntactic entity it is neither decidable whether
this syntactical entity is a proposition nor whether it is a proof of a given propo-
sition. The intensional identity type on the other hand retains decidability of

1The notion of definitional equality also appears in the work of de Bruijn [32] where it
coincides with judgmental equality.

2. Equality 3

type checking by dropping the equality reflection rule but still keeping its in-
troduction and elimination rule.2 The introduction rule (also present for the
extensional identity type) witnesses reflexivity, that is,

a : A
r a : IdA(a, a)

and the elimination rule (also called the J-rule) states3

x : A, y : A, z : IdA(x, y) ` C(x, y, z)
x : A ` d(x) : C(x, x, r x) a : A b : A p : IdA(a, b)

J(x.d(x), a, b, p) : C(a, b, p)

with the judgmental equality (tacitly assuming well-typedness)

J(x.d(x), a, a, r a) = d(a) : C(a, a, r a). (#)

The elimination rule adapts the concept of equality as the least reflexive re-
lation to dependent types—this purely formal adaption has, as we shall see
later, far-reaching and unexpected connections to homotopy theory. From the
elimination rule we can also derive Leibniz’s principle of indiscernability of
identicals.

The intensional identity type, while retaining decidability of type checking,
is, however, per se often too restrictive in practice to encode mathematics
since it lacks extensional concepts, most notably function extensionality which
states that two functions are propositionally equal whenever they agree on all
arguments. The intensional identity type only identifies (closed) functions if
they are judgmentally equal; more generally, using a normalization argument
one can show [59] that in the empty context, IdA(a, b) is inhabited iff a =
b : A. The “extensional” identity type on the other hand allows to derive
function extensionality using the congruence and η-rule together with equality
reflection.

Another extensionality concept is quotient types, that is, the possibility
to redefine equality by a given relation. This is neither directly available for
intensional nor “extensional” identity types.

One way to obtain function extensionality is to simply add it as an axiom.
The canonicity property for the type of natural numbers N states that any
closed term of type N is judgmentally equal to a numeral (that is, a term only
built from zero and successors). This does not hold in the presence of function
extensionality stated as an axiom. This canonicity property is in particular
desirable from the perspective of intuitionistic type theory as a programming
language: one should be able to evaluate/run a (closed) program of type N to

2In the absence of the equality reflection rule it often makes sense to use judgmental
and definitional equality as synonyms (although to refer to η-equality as an equality by
“definition” might also be questioned).

3We write Γ ` J for hypotetical judgments where Γ is a context of the form x1 :
A1, . . . , xn : An, that is, each Ai is a type in the context x1 : A1, . . . , xi−1 : Ai−1.

4 Introduction

obtain a numeral and moreover the theory should know about this numeral
(namely via judgmental equality).

A possible remedy to the lack of function extensionality is to exploit the
setoid interpretation of type theory by Hofmann [46] and to work instead with
setoids, that is, a type equipped with an equivalence relation (to serve as propo-
sitional equality relation). Functions, under this interpretation, are required
to preserve the respective equivalence relation and thus are extensional. This
is inspired by Bishop’s notion of set in which “a set is defined by describing
what must be done to construct an element of the set, and what must be done
to show that two elements of the set are equal” [18, p. 67]. Hofmann’s inter-
pretation, however, does not satisfy all judgmental equalities of type theory
and its use turns out to be rather cumbersome in practice, especially in the
presence of dependent types. A system incorporating ideas from the setoid in-
terpretation and reconciling some of the extensional concepts with intensional
type theory is observational type theory [6]; this system extends type theory
by a type of propositions with proof irrelevance.

The rich structure of the identity type stems from the fact that iterating
the identity type gives rise to higher-dimensional equalities: given a and b of
type A, we can form IdA(a, b); given p and q of type IdA(a, b), we can form the
type IdIdA(a,b)(p, q); given further α and β of type IdIdA(a,b)(p, q), we can form

IdIdIdA(a,b)(p,q)(α, β);

and so on. The natural question now arises: what structure do these higher
identity types form? In particular, can one prove IdIdA(a,b)(p, q) for p and
q of type IdA(a, b), that is, is there essentially only “one way” to prove a
propositional equality IdA(a, b)? The latter principle is often referred to as
uniqueness of identity proofs (UIP). In extensional type theory UIP is provable
from the reflection rule and thus this hierarchy collapses. Although it is known
by a theorem of Hedberg [45] that any type with decidable equality4 satisfies
UIP, the general answer to this question is however negative as shown by the
pioneering work of Hofmann and Streicher [49, 46]. They devise a model of
intensional type theory where a (closed) type A is interpreted by a groupoid5

G and the closed terms of A are interpreted as the objects in G.6 The arrows
a → b for a and b objects of G stand for the witnesses that a and b are
propositionally equal. UIP is then refuted by specifying a groupoid with two
distinct parallel arrows a → b. The fact that G is required to be a groupoid
stems from the fact that one can define—internally in type theory—operations
corresponding to the groupoid operations: the introduction rule r a : IdA(a, a)
corresponds to the identity map, transitivity

_ ◦_ : IdA(b, c)→ IdA(a, b)→ IdA(a, c)

4That is, a type A such that IdA(x, y) + ¬ IdA(x, y) for all x and y of type A.
5A category where each arrow is invertible.
6A model for dependent types based on groupoids also has been studied earlier by

Lamarche [55] without considering identity types.

3. Homotopy Theory and Type Theory 5

corresponds to composition, and symmetry

_−1 : IdA(a, b)→ IdA(b, a)

corresponds to taking the inverse. These operations satisfy the expected
groupoid equations, but in general only up to propositional equality; for ex-
ample, (p ◦ q) ◦ r (for appropriately typed p, q, r) is not definitional equal to
p ◦ (q ◦ r), but we can define a higher equality between equalities

αp,q,r : IdIdA(a,d)((p ◦ q) ◦ r, p ◦ (q ◦ r)).

The groupoid interpretation validates function extensionality and an ex-
tensionality principle for universes stating that propositional equality for uni-
verses is isomorphic to having an isomorphism. (A type-theoretic universe is
a type of types.) It should also be noted that the groupoid model is given in a
constructive metatheory; but it is not clear whether it can be directly formal-
ized within intensional type theory (that is, type theory with the intensional
identity types).

3 Homotopy Theory and Type Theory
Already the groupoid interpretation suggests that a type in intensional type
theory should be thought of more than merely a “set”. Instead, a type should
be thought of as a topological space—but up to homotopy. Around 2006,
Awodey and Warren [9] and Garner [38] discovered connections between ho-
motopy theory and type theory in the context of Quillen model categories, in
particular, between the J-rule and the abstract lifting conditions of those model
categories. Moreover, Streicher [76] and independently Voevodsky [82, 54]
built a model of type theory using Kan simplicial sets (the latter model also
supporting type-theoretic universes, that is, types of types).

One crucial point in this analogy between types and spaces is what under
this view the interpretation of the identity type is: while u : A should be
thought of as a point in the space A, a term p : IdA(u, v) should be thought
of as a path between u and v, that is, a continuous map p : I → A (where
I = [0, 1] is the interval) such that p(0) = u and p(1) = v. Higher equalities
α : IdIdA(u,v)(p, q) correspond to homotopies (or 2-dimensional paths) α : I →
AI ∼= I× I→ A between the paths p, q : I→ A with α|{0}×I = p and α|{1}×I =
q; etc.

u • u • • v u • • v . . .
p

p

q

α

All the higher homotopies on a space A organize into a structure called the
fundamental ∞-groupoid of A, the prime example of a so-called (weak) ∞-
groupoid. These higher groupoids are closely connected to homotopy theory,

6 Introduction

as proposed by Grothendieck [44]. It was shown that a type (in intensional
type theory) and its higher-dimensional equalities give rise to such an ∞-
groupoid [58, 57, 80].

Another groundbreaking insight by Voevodsky besides the interpretation
of type theory using Kan simplicial sets was that this interpretation satisfies
an additional axiom, the so-called univalence axiom [87]. This axiom explains
the identity type for type-theoretic universes. Such a type-theoretic universe
U is a type of types: in the presentation of universes à la Russell a term
A : U is also a type A; such universes are usually closed under type formers
such as dependent functions, dependent sums, natural numbers, and identity
types. The univalence axiom states, loosely speaking, that equivalent7 types
(as elements of U) are equal, where “equal” refers to the identity type of U.
This formalizes the everyday habit by mathematicians to identify isomorphic
structures, although this is clearly not valid in set theory: 0 ∈ {0} but 0 /∈ {1}
even though {0} ∼= {1}. The univalence axiom can also be seen as an ex-
tensionality principle: it is a natural generalization of the concept in simple
type theory formulated by Church [23] that two propositions are equal given
that they are logically equivalent. It also generalizes the notion of universe
extensionality discovered by Hofmann and Streicher in their groupoid inter-
pretation. Univalence is further incompatible with the UIP principle since,
for example, negation gives a non-trivial automorphism on N2 (the booleans),
which induces a non-trivial proof of equality by univalence.

Voevodsky also suggested a new foundation of mathematics, called uni-
valent foundations [84, 83, 85]. In this foundation the domain of discourse
is not given by sets but rather, more general, by their “higher-dimensional
analogues” of ∞-groupoids. Such ∞-groupoids are stratified by the notion
of n-groupoids which correspond to so-called homotopy n-types (spaces, up to
homotopy equivalences, where the i-th homotopy group vanishes for all i > n).
It has been argued in [84] that categories are not higher-level analogues of sets,
but rather this role is taken by groupoids. From this perspective a category
is a “groupoid” equipped with additional structure (sets of morphisms with
identities and compositions satisfying certain equations), being the next level
analogue of a partially ordered set: a set equipped with the additional struc-
ture of a binary relation which is reflexive and transitive.

Voevodsky realized that the language of intensional Martin-Löf type theory
is suitable to express this view of mathematics.8 One of his crucial observa-
tions was that one can express the above stratification inside type theory: the
important hierarchy of homotopy levels, or h-levels is given as follows. Call a
type A contractible, or of h-level 0, if we have

(Σa : A)(Πx : A) IdA(a, x).
7That is types, having an equivalence between them; for the sake of this introduction

the technical definition of equivalence is not so important; let us just mention that being
an equivalence is logically equivalent to being an isomorphism, that is, having a (pointwise)
inverse.

8See in particular the formalization [88, 89] developed in the type theory of Coq with
univalence added as an axiom.

4. Computational Hurdles 7

A type A is of h-level n + 1 if for all x, y : A the type IdA(x, y) is of h-level
n. It is a theorem that a type is of h-level 1 iff it has at most one element;
we call those h-proposition9. For a type to be of h-level 2 is then the same to
have UIP for this type (those are called h-sets). Types with h-level 3 are called
h-groupoids. The univalence axiom and the J-rule imply that this hierarchy is
“well behaved”, in particular it is cumulative. It is also closed under dependent
function types, that is, (Πx : A)B(x) is of h-level n whenever B(x) is a family of
types of h-level n; this uses that in fact function extensionality is a consequence
of univalence. Moreover, one can show that the type of all types of h-level n
is of h-level n+ 1; in particular, the type of h-sets is an h-groupoid.

Also the notion of equivalence referred to in the formulation of the uni-
valence axiom, formulated of course inside type theory, was a major contri-
bution by Voevodsky. It generalizes the notion of logical equivalence, iso-
morphism/bijection between sets, categorical equivalence, etc., if specialized
to objects with according h-levels. Moreover, the univalence axiom implies
that isomorphic structures are equal, for example, two groups (formulated as
h-sets with units and binary operations satisfying the usual laws) which are
isomorphic are equal.

Because of the intricate connections between homotopy theory and type
theory this branch of mathematics is often called homotopy or univalent type
theory. The univalence axiom with many of its discussed consequences—among
others—allows for a better encoding of mathematics in dependent type theory
à la Martin-Löf, as is particularly shown in the book [79]. Another aspect,
developed, for example, ibid. and in Brunerie’s recent thesis [20], is that type
theory can also be used to develop algebraic topology where all notions are
invariant under homotopy equivalence.

4 Computational Hurdles
Similar as for the function extensionality axiom, simply postulating the univa-
lence axiom as a constant added to intensional Martin-Löf type theory destroys
the good computational behavior of type theory, making it necessary to explain
univalence computationally. One possible attempt to do so is to build a model
of this axiom in type theory itself or at least in a constructive metatheory.
Such a computational interpretation could then be obtained through seman-
tics, for example, by evaluating a term of type N (the natural numbers) in
the model. A computational explanation obtained in this way may however
have the defect that a priori it is not clear that if we would have another such
explanation via evaluation that we would get the same numeral. This would
however follow from a conjecture by Voevodsky [86]:

Conjecture. There is a terminating algorithm that for any u : N which is
closed except that it may use the univalence axiom returns a closed numeral

9This notion should not be confused with the notion of proposition as we used it earlier
in the proposition-as-types interpretation. However, often the suffix “h-” is also dropped.

8 Introduction

n : N not using the univalence axiom and a proof that IdN(u, n) (which may
use the univalence axiom).

As mentioned above, Voevodsky devised a model of the univalence axiom in
simplicial sets and thus ensuring its consistency. Roughly speaking, simplicial
sets are a combinatorial representation of spaces; a simplicial set is given by
specifying its n-simplicies: more formally, a simplicial set is a presheaf on the
simplicial category ∆ whose objects are the non-empty finite linear ordered
sets [n] = {0, 1, . . . , n}, n ≥ 0, and whose morphisms are (non-strictly) order
preserving maps. Among those there are the Kan simplicial sets, that is, sim-
plicial sets satisfying Kan’s extension condition: any horn–simplices missing
their interior and one face–can be filled. A way to look at simplicial sets is as a
generalization of (reflexive) relations: points are related if they are connected
by an edge (1-simplex); from this perspective, Kan simplicial sets generalize
sets equipped with an equivalence relation, that is, setoids. Kan simplicial sets
are also one way to make the notion of ∞-groupoid precise.

In Voevodsky’s model of the univalence axiom closed types are interpreted
by Kan simplicial sets (and general types by Kan fibrations). This model is
however formulated in classical ZFC set theory and the theory of (Kan) sim-
plicial sets relies essentially on classical reasoning; as such, it can not directly
be used to explain univalence computationally. One aspect where classical
logic is used essentially arises in the general theory of simplicial sets: being a
degenerate simplex is not a decidable property. Reasoning by cases on whether
a simplex is degenerate or not is used, for example, when showing that for a
Kan fibration a path in the base induces an equivalence of the fibers. Another
example where this is used is to show that BA is a Kan simplicial set whenever
B is. Both of these classical theorems are not provable intuitionistically, as
shown using Kripke models in [14] and [16], respectively. The latter result was
also strengthened in Parmann’s thesis [67] to include Kan simplicial sets where
the Kan fillers are explicitly given as functions.

5 This Thesis
This thesis is concerned with giving a constructive justification of the univa-
lence axiom. In a first attempt [11], not included in this thesis, we were using
a model based on Kan semi-simplicial sets10. This approach is however very
involved and does not model various laws for substitutions. Instead, this thesis
addresses the question of giving a constructive justification of the univalence
axiom by concentrating on methods involving cubical sets. Cubical sets were
used to give the first combinatorial definition of homotopy groups by Kan [53].

In this thesis we will use two variations of cubical sets, and both of the
variants view cubes as formal representations of cubes seen as continuous maps
u : IJ → X (with I = [0, 1]) where J is a finite set of so-called names i1, . . . , in,

10Semi-simplicial sets are defined like simplicial sets, but instead of the simplicial category
∆ one takes the category with the same objects but strictly monotone maps instead; this
results in the fact that semi-simplicial sets are not equipped with degeneracy operations.

5. This Thesis 9

instead of the more common u : In → X. We want to view such a cube as
“value depending on the names” i1, . . . , in. On such a value we can perform
basic operations which correspond to substitutions (or reparametrizations) of
the variables i1, . . . , in. The two variants of cubical sets we consider differ in the
substitutions allowed; both of them include: the face operation, that is, setting
a variable to 0 or 1, so, for example, u(ik = 0); adding a variable dependency
for a fresh name j, so considering u from above as a value depending on
i1, . . . , in, j, constant in the j-direction—this corresponds to the degeneracy
operation; and, renaming a variable ik into a fresh name j, u(ik = j). These
formulations bear close resemblance to the theory of nominal sets [70, 69, 71].
There are various further variations of cubical sets used in the literature (see,
for example, [43]).

Structure of this Thesis

This thesis is structured into two parts which can be read independently. Part I
is, apart from minor corrections and the omission of abstract and acknowledg-
ments, a copy of my licentiate thesis [50], which in turn is based in parts on [15].
As such the introduction to Part I has a slight overlap with the present intro-
duction. Part II comprises two chapters, each based on a paper adapted to
match the present layout: Chapter 6 is based on [26] and Chapter 7 is based
on the preprint [51]. We will now give a short overview of each of the three
components of this thesis.

5.1 A Model of Type Theory in Cubical Sets
In Part I we begin by exploring a model of type theory not based on simplicial
sets but rather on a variant of cubical sets. Similar to simplicial sets, cubical
sets are formally defined as presheaves, but on a category of cubes whose
objects are finite sets of names I = {i1, . . . , in}, n ≥ 0, and morphisms are
substitutions J → I described by set-theoretic maps I → J ∪ {0, 1} required
to be injective on the preimage of J—these formally describe the operations
mentioned above.

Since any presheaf category induces a model of type theory (see, for exam-
ple, [47]) we get such a model where the contexts are interpreted by cubical
sets. This model however satisfies UIP and does not give us the envisaged
identity types—we want that identity types should be modeled, in accordance
to the above correspondence to homotopy, namely as path spaces. Similar to
the model based on Kan simplicial sets where types are interpreted by Kan
fibrations, we have to strengthen the notion of types and have to require a so-
called Kan structure. This structure refines Kan’s original extension condition
(“Kan cubical sets”) as defined in [53] which amounts to have fillers for all open
boxes. We refine Kan’s notion in three aspects: first, we require these fillers to
be explicitly given as operations, second, we allow more general shapes to be
filled (for example, a line can be extended to a square), and, third, that these
operations satisfy certain uniformity conditions which ensure that the filling

10 Introduction

operations commute with the name substitutions in a suitable way. The third
refinement is essential to show that types are closed under dependent function
spaces.

This way we obtain a model of Martin-Löf type theory supporting depen-
dent functions and sums, identity types, and universes. The identity types are
interpreted by path spaces induced by (affine) exponentials with an interval.
These, however, are only weak identity types in the sense that they satisfy the
judgmental equality (#) only propositionally. A proper identity type can be
recovered following an idea of Swan [77]. This model is given in a constructive
metatheory and thus gives rise to an effective method to compute.

Inspired by (a nominal version of) this model we have implemented a proof
checker [25] in Haskell. This also features an experimental implementation of
the univalence axiom based on the note [28].

This model has also been considered from the perspective of nominal sets
by Pitts [69, 71]. Moreover, Swan [77] analyzes the model using the language
of algebraic weak factorization systems [39] in the constructive set theory CZF.

5.2 Cubical Type Theory: A Constructive Interpretation
of the Univalence Axiom

We begin Part II in Chapter 6 by formulating a cubical type theory as an
extension of Martin-Löf type theory which is inspired by a refinement of the
model described in Part I. This type theory allows to directly argue about
n-dimensional cubes, function extensionality has a direct proof, and Voevod-
sky’s univalence axiom is provable. One of its important ingredients is that
expressions may depend on names ranging over a formal interval I, that is,
we allow contexts also to contain variable declarations i : I; a term u(i) : A
depending on i : I (with, say, A a closed type) can then be considered as a line
with endpoints u(0) : A and u(1) : A. Such a term u(i) induces a path 〈i〉u
between u(0) and u(1) by abstracting the variable i.

The notion of cubical sets which constitutes a model for cubical type the-
ory, is similarly to the one in Part I but where the category of cubes is now
refined by taking as morphisms J → I maps I → dM(J) where dM(J) is the
free de Morgan algebra with generators in J ; this allows also for operations
corresponding to connections [19] and to taking diagonals.

Each type, both in the model and type theory, comes equipped with so-
called composition operations11 which, roughly speaking, give only the “lid” of
an open box. In the model, these operations are required to satisfy similar uni-
formity conditions as in the model described in Part I; on the syntax side, that
is, in cubical type theory, this uniformity corresponds to the fact that these
operations commute with substitutions. A significant simplification over the
model in Part I is that the filling operations can be defined from composition
operations using connections.

11In that respect I is not a type since it can not be equipped with such composition
operations as shown by Christian Sattler (private communication).

6. Statement of Personal Contribution 11

Another important ingredient of cubical type theory and its model is the
glueing construction. It can be used to explain the composition operation for
universes and to justify the univalence axiom. The glue operation allows for a
type to glue types to certain parts of another type along an equivalence.

We support the usual type formers for dependent function spaces and de-
pendent sums, universes, data types, and path types. The path type is a weak
identity type in the above sense; it is also possible to extend, both the seman-
tics and the syntax, by a proper identity type on top of the path type also
satisfying the judgmental equality (#) following Swan’s trick.

We also support certain higher inductive types like spheres and proposi-
tional truncation. Such a higher inductive type is similar to an inductive type
but one may also introduce constructors for paths. In this way, the circle can,
for example, be defined with a point constructor base and a path constructor
loop giving a path between base and base.

We have implemented a prototype proof assistant [27] for cubical type
theory in Haskell.

Parts of this model have been generalized to other settings by Gambino
and Sattler [37]. Orton and Pitts [66] investigate on how the model can be
formulated in the internal language of a topos assuming an interval-like ob-
ject. In [17] cubical type theory has been extended to incorporate ideas from
guarded type theory. Mark Bickford has reported on an ongoing formalization
of the model in the Nuprl proof assistant.

5.3 Canonicity for Cubical Type Theory
Although the consistency of cubical type theory as formulated in Chapter 6
follows from its model in cubical sets, we would also like to establish important
properties like normalization and decidability of type checking. As a first step
to address these problem we prove a canonicity theorem in Chapter 7: given a
context I only built from name variables, that is, of the form i1 : I, . . . , ik : I,
k ≥ 0, and a derivation I ` u : N, then there is a n ∈ N such that I ` u =
Sn 0 : N. It is moreover effective to obtain this number n. The proof is an
adaption of Tait’s computability method [78, 62] to a presheaf-like setting; we
work with a typed and deterministic operational semantics.

6 Statement of Personal Contribution
As already mentioned above, parts of this thesis are based on collaborations
with other people. My personal contribution is as follows:

Part I. This part is based on my licentiate thesis which in turn is based in
parts on [15], coauthored with Marc Bezem and Thierry Coquand. In this
paper (loc cit.), the crucial ingredient of the uniformity condition is due to
Coquand; I mainly worked out the details of the semantics and in particular
the details of the Kan structure for Π-types and the sketch for compositions in

12 Introduction

universes. The write-up in the licentiate thesis is entirely by me and includes
more details. The proof that the universe is a Kan cubical set is by me and
not included in [15].

Part II, Chapter 6. This chapter is based on the paper [26] coauthored
with Cyril Cohen, Thierry Coquand, and Anders Mörtberg, which is to appear
in the post-proceedings of the 21st International Conference on Types for
Proofs and Programs, TYPES 2015. The ideas in the paper came about in
the collaborative effort to implement the type checker [25, 27] for [15]. The
initial use of connections and the glueing operation (generalizing an operation
sketched in [15]) is due to Coquand. I am the main responsible for the section
about semantics. I also participated working on all the other parts of the paper.
Together with Mörtberg, I discovered that the glueing operation satisfies to
prove the univalence axiom. See also the notes in the Acknowledgment section
of this chapter for my contributions during the development of the material.

Part II, Chapter 7. This chapter is based on the preprint [51] which is
entirely my own work.

Part I

A Model of Type Theory
in Cubical Sets

Introduction

Dependent type theory has been successfully used as a foundation to develop
formalized mathematics and computer science. This is reflected not only by
the popularity of the proof assistants Coq and Agda (among others) based on
type theory, but also the formal proofs of the Four Color Theorem [41] and the
Feit-Thompson (Odd Order) Theorem [42] show that non-trivial mathematics
can be encoded in type theory.

There is however one especially intricate concept in dependent type theory:
equality. The identity type, IdA(u, v), for u and v of type A, serves as the type
of proofs witnessing that u and v are identical. Dependent type theory also
comes with a different notion of equality namely definitional equality which,
in contrast to the identity type, is not a type (hence the identity type is often
referred to as propositional equality), but definitional equality concerns the
computational aspect of type theory, and is often presented as a judgment
(and hence also referred to as judgmental equality). Martin-Löf formulated
two variations of the identity type, the intensional identity type from [59], and
the “extensional” identity type from [61]. In the latter one has the so-called
reflection rule: if we have a proof of IdA(u, v), we can deduce that u and v are
definitionally equal. This equality reflection rule, however, destroys the decid-
ability of type checking, resulting in a formal system where it is not decidable
whether a given syntactic entity is in fact a proof of a given proposition. The
intensional identity type on the other hand, drops this rule while still keeping
its introduction and elimination rules (the latter often referred to as the J-
rule), which entail the usual properties of equality, in particular Leibniz’s rule
of indiscernability of identicals.

While the formulation without equality reflection retains decidability of
type checking, the intensional identity type per se is, however, often too restric-
tive to directly encode certain mathematical practices such as identifying two
functions which are extensionally equal, that is, for which each argument gives
equal results. The intensional identity type only identifies functions which are
definitionally equal which often tends to be too restrictive in practice. One
remedy to this particular problem is to simply add functional extensionality
as an axiom—but this destroys the good computational properties of type the-
ory: e.g., one can define a closed term of type N (the type of natural numbers)
which is not definitionally equal to a numeral (i.e., a term merely built up from
successors and zero). One possibility is to exploit Hofmann’s [46] setoid inter-

16

pretation and work with setoids (a type with an equivalence relation) instead,
and relativize to functions preserving this relation. This, however, turns out
to be rather cumbersome in practice. A type theory incorporating ideas from
the setoid interpretation and reconciling some of the extensional concepts with
intensional type theory is observational type theory [6].

The rich structure of the intensional identity type stems from the fact that
in type theory we can iterate the identity type to obtain “higher-dimensional”
identity types: for p and q of type IdA(u, v) we can form IdIdA(u,v)(p, q); and
for α and β of type IdIdA(u,v)(p, q) we can furthermore form the type

IdIdIdA(u,v)(p,q)(α, β);

etc. It is a natural question to ask what the structure of these higher identity
types is. In particular, can one prove IdIdA(u,v)(p, q) for p and q of type
IdA(u, v), i.e., is there essentially only “one way” to prove a propositional
equality IdA(u, v)? The latter principle is often referred to as uniqueness of
identity proofs (UIP). In extensional type theory UIP is provable from the
reflection rule and thus this hierarchy collapses. For intensional type theory,
however, UIP is not provable as shown by the pioneering work of Hofmann
and Streicher [49]. They devise a model of intensional type theory where a
(closed) type A is interpreted by a groupoid12 G and the closed terms of A
are interpreted as the objects in G. The arrows u → v for u and v objects
of G stand for the witnesses that u and v are propositionally equal. UIP is
then refuted by specifying a groupoid with two distinct parallel arrows u→ v.
The fact that G is required to be a groupoid stems from the fact that one
can define–internally in type theory–operations corresponding to the groupoid
operations: the introduction rule reflu : IdA(u, u) corresponds to the identity
map, transitivity

_ ◦_ : IdA(v, w)→ IdA(u, v)→ IdA(u,w)

corresponds to composition, and symmetry

_−1 : IdA(u, v)→ IdA(v, u)

corresponds to taking the inverse. These operations satisfy the expected
groupoid equations, but in general only up to propositional equality; e.g.,
(p ◦ q) ◦ r (for appropriately typed p, q, r) is not definitional equal to p ◦ (q ◦ r),
but we can define a higher equality between equalities

αp,q,r : IdIdA(u,w′)((p ◦ q) ◦ r, p ◦ (q ◦ r)).

Already the groupoid interpretation suggests that a type in intensional
type theory should be thought of more than merely a “set”. Instead, a type
should be thought of as a topological space—but up to homotopy. Around
2006 Awodey and Warren [9] and Garner [38] discovered connections between

12A category where each arrow is invertible.

17

homotopy theory and type theory in the context of Quillen model categories.
Moreover, Streicher [76] and independently Voevodsky [54] built a model of
type theory using Kan simplicial sets (the latter model also supporting type-
theoretic universes, i.e., types of types).

One crucial point in this analogy between types and spaces is what under
this view is the interpretation of the identity type: while u : A should be
thought of as a point in the space A, a term p : IdA(u, v) should be thought
of as a path between u and v, i.e., a continuous map p : I → A (where I =
[0, 1] is the interval) such that p(0) = u and p(1) = v. Higher equalities
α : IdIdA(u,v)(p, q) correspond to homotopies (or 2-dimensional paths) α : I→
AI ∼= I× I→ A between the paths p, q : I→ A with α|{0}×I = p and α|{1}×I =
q; etc.

u • u • • v u • • v . . .
p

p

q

α

All the higher homotopies on a space A organize into a structure called the fun-
damental ∞-groupoid of A, the prime example of a so-called weak ∞-groupoid.
These higher groupoids are closely connected to homotopy theory, as proposed
by Grothendieck [44].

Another groundbreaking insight by Voevodsky was that the interpreta-
tion of type theory using Kan simplicial sets satisfies an additional axiom,
the so-called Univalence Axiom. This axiom explains the identity type for
type-theoretic universes. (A type-theoretic universe U is a type of types.)
The Univalence Axiom states, loosely speaking, that isomorphic types (as el-
ements of U) are equal, where “equal” refers to the identity type of U . This
formalizes the everyday habit by mathematicians to identify isomorphic struc-
tures. Although this is clearly not valid in set theory: 0 ∈ {0} but 0 /∈ {1}
even though {0} ∼= {1}. The Univalence Axiom can also be seen as an ex-
tensionality principle: it is a natural generalization of the concept in simple
type theory formulated by Church [23] that two propositions are equal given
that they are logically equivalent. The Univalence Axiom allows for a bet-
ter encoding of mathematics in dependent type theory à la Martin-Löf, as is
particularly shown in the book [79]. One aspect of this is that it entails the
function extensionality axiom discussed above.

Another important contribution by Voevodsky is how notions from ho-
motopy theory translate into the language of type theory. For example, the
important hierarchy of h-levels: Call a type A contractible, or of h-level 0, if we
have (Σa : A)(Πx : A) IdA(a, x). A type A is of h-level n+ 1 if for all x, y : A
the type IdA(x, y) is of h-level n. For a type to be of h-level 2 is then the same
to have UIP for this type (those are called h-sets). Types with h-level 3 are
called h-groupoids. The Univalence Axiom yields that this hierarchy is “well
behaved”, in particular it is closed under function types.

Similar to the situation with the function extensionality axiom, simply
postulating the Univalence Axiom as a constant added to Martin-Löf type

18

theory destroys the good computational behavior of type theory, making it
necessary to explain univalence computationally. One possible attempt to do
so is to build a model of this axiom in type theory itself or at least in a
constructive metatheory. Such a computational interpretation could then be
obtained through semantics, for example, by evaluating a term of type N (the
natural numbers) in the model.

The model of univalence using Kan simplicial sets by Voevodsky is, as it
is, not suited to justify the axiom computationally since it is not constructive.
This model is formulated using ZFC set theory and uses classical logic and the
axiom of choice in an essential way. One problem with using simplicial sets has
to do with the fact that the notion of degeneracy is not decidable in general
and that simplicial maps have to commute with degeneracy maps. The theory
of simplicial sets and Kan simplicial sets however crucially uses reasoning by
cases on whether a simplex is degenerate or not. One example where this is
needed is that for a Kan fibration, a path in the base induces an equivalence
between the fibers over the endpoints; this was shown in [14], using a Kripke
counter-model, to be not intuitionistically provable. Similar problems seem to
appear when looking at the different proofs (e.g., [63, 40]) of the fact that BA
is a Kan simplicial set if B is so.

One possible remedy for this problem is to use Kan semi-simplicial sets in-
stead as was done in [11]. This approach however is very involved and does not
model various laws for substitutions. This part presents a different approach
based on cubical sets. Cubical sets were used to give the first combinatorial
definition of homotopy groups by Kan [53].

Our formulation of cubical sets gives a formal representation of cubes seen
as continuous maps u : IJ → X (with I = [0, 1]) where J is a finite set of names
x1, . . . , xn, instead of the more common u : In → X. We want to view such a
cube as “value depending on the names” x1, . . . , xn. We have face operations
like, e.g., u(xi = 0), setting the xi-coordinate to 0; for a fresh name y we
can view u as depending on x1, . . . , xn, y; this corresponds to the degeneracy
operation; another primitive operation is to rename a variable. Thus the basic
operations in cubical sets are certain substitutions of names. This formulation
bears close resemblance to the theory of nominal sets [70, 69, 71]. There are
various different variations of cubical sets used in the literature (see, e.g., [43]).

Formally cubical sets are given as presheaves on the (opposite of the) so-
called cubical category, a category given by finite sets of names and certain
substitutions between them. Following, e.g., [47], this yields a model of type
theory where the contexts are interpreted as cubical sets. However to obtain
the envisaged identity types we have to strengthen, similarly as in the Kan
simplicial set model, the interpretation of types: we require types to have aKan
structure. This structure is a refinement of Kan’s original extension condition
(“Kan cubical sets”) as defined in [53] which amounts to have fillers for all
open boxes. We refine Kan’s notion in two aspects: first, we require these
fillers to be explicitly given as operations, and, second, that these operations
satisfy certain uniformity conditions which ensure that the filling operations
commute with the name substitutions in a suitable way. The second refinement

19

is crucially used to show that types are closed under dependent function spaces.
This part presents this model for type theory with identity types, Σ-types,

Π-types, and a universe. The interpretation of the identity type, however, only
satisfies the usual equation of the J-eliminator up to propositional equality
and not as definitional equality as is usually required in type theory. The
part is based on the publication [15] and adds more detailed proofs. A new
contribution is the semantics of universes as Kan cubical sets. The treatment
of the Univalence Axiom is not included here, but will be part of a future
publication; sketches of the verification of univalence in this model are however
given in [15, Section 8.4] and [28].

Moreover, this model (in its nominal set presentation) has been, imple-
mented as the type-checker Cubical [25]13 together with C. Cohen, T. Co-
quand, and A. Mörtberg. This implementation builds on top of ordinary
dependent type theory (without identity types) where certain primitive con-
stants (giving rise to the properties we want for propositional equality) are
available; whenever the type checker requires to check for conversion of two
terms (i.e., definitional equality) we compare their semantics in the model.
The implementation supports computing with the Univalence Axiom and in
particular transporting along an equivalence.

Outline
In Chapter 1 we define semantics of Martin-Löf type theory relying on the
notion of categories with families; we show how presheaves form an instance
of this structure and thus give rise to a model of type theory. Chapter 2
introduces cubical sets as presheaves on the so-called cubical category along
with examples. We also look into the relationship to nominal sets. Chapter 3
is the heart of this part: we introduce the notion of (uniform) Kan cubical sets
and show that these induce a category with families extending the presheaf
semantics. We give the interpretation of dependent sums, dependent products,
and identity types. We also show how any cubical set can be “completed” to
a Kan cubical set. In Chapter 4 we give the construction of a universe of Kan
cubical set and show that it is itself a Kan cubical set, thus providing the
semantics of a type-theoretic universe in our model.

13The version relevant for this part is on the master branch dated September 24, 2014.

20

Chapter 1

Semantics of Martin-Löf
Type Theory

In this chapter we will introduce semantics of type theory based on the notion
of categories with families. As an extended example we explain how presheaf
categories induce such a model of type theory. This is the basis for the model
described in the next chapters.

1.1 Categories with Families
There are various similar notions to organize models of dependent type theory.
In what follows we chose categories with families (CwF) which were introduced
by Dybjer [34] and further popularized by Hofmann [47]. Categories with
families can be seen as an algebraic presentation of type theory. Even though
the definition of a CwF is given using categorical language we want to stress
the fact that it is an instance of a generalized algebraic theory [22]. To devise
a CwF is to give: interpretations (as sets) for the sorts of contexts, context
morphisms, types, and terms; operations including the context extension; and
to check equations involving those operations.

We will not be concerned with the (non-trivial) task to interpret the syntax
of Martin-Löf type theory into a CwF. We refer the reader to [47] for a sketch
of this.

The category of families of sets, Fam, has as objects (A,B) where A is a set
and B = (Ba | a ∈ A) is a A-indexed family of sets Ba, a ∈ A. A morphism
between (A,B) → (A′, B′) is given by a pair (f, g) where f : A → A′ is a
function and g is an A-indexed family of functions such that ga : Ba → B′fa.

Definition 1.1.1. A category with families (CwF for short) is given by (C,F)
where:

1. C is a category whose objects Γ,∆, . . . we call contexts and whose mor-
phisms σ, τ, . . . we call substitutions or context morphisms; we write Γ `

22 Chapter 1. Semantics of Martin-Löf Type Theory

to indicate that Γ is an object of C, if C is clear from the context.

2. A terminal object 1 in C called the empty context.

3. F is a functor F : Cop → Fam; for Γ ` we write TyF (Γ) for the indexing
set of the family F(Γ) and its family as (TerF (Γ;A) | A ∈ TyF (Γ)); we
also write Γ ` A for A ∈ TyF (Γ) and call A a type in context Γ (or
over Γ), and Γ ` a : A for a ∈ TerF (Γ;A) and call a a term of type A
in context Γ. For a substitution σ : ∆ → Γ the morphism F(σ) acts on
types Γ ` A as Aσ, and on terms Γ ` a : A as aσ. Note that ∆ ` Aσ
and ∆ ` aσ : Aσ, and the fact that F is a functor yields:

A1 = A (Aσ)τ = A(στ) a1 = a (aσ)τ = a(στ)

(Here and henceforth 1 denotes the suitable identity morphism.)

4. The operations of context extension: if Γ ` and Γ ` A, there is a con-
text Γ.A, a context morphism p : Γ.A → Γ, and a term Γ.A ` q : A p.
This should satisfy the following (universal) property: for each ∆ `
and substitution σ : ∆ → Γ and ∆ ` a : Aσ, there is a substitution
(σ, a) : ∆→ Γ.A such that:

p(σ, a) = σ q(σ, a) = a (σ, a)τ = (στ, aτ) (p, q) = 1

where in the last equation 1 : Γ.A→ Γ.A.

Note that above we use polymorphic notation to increase readability as
in [22, 34]; e.g., without this convention we should have written pΓ,A for the
first projection p : Γ.A → Γ. We also leave parameters implicit, so, e.g., the
equation (Aσ)τ = A(στ) tacitly assumes premises σ : ∆→ Γ, τ : Θ→ ∆, and
Γ ` A.

Example 1.1.2. We can make the category of sets Set into the category of
contexts of a CwF if we set the types over a set Γ to be the families of (small)
sets Aγ indexed over γ ∈ Γ. A term is simply a dependent function aγ ∈ Aγ
for each γ ∈ Γ, i.e., an element in the (set-theoretic) dependent function space
Πγ∈ΓAγ . Context extensions are defined by the disjoint union

Γ.A = {(γ, a) | γ ∈ Γ and a ∈ Aγ}

with p(γ, a) = a and q(γ, a) = a.

As already indicated in the notation above we will usually suppress the
reference to the CwF if clear from context. Moreover, we will usually present
properties in rule form from now on. So, e.g., we will present the above

1.1. Categories with Families 23

definition in rule form as:

1 `
Γ ` Γ ` A

Γ.A `

Γ ` A σ : ∆→ Γ
∆ ` Aσ

Γ ` a : A σ : ∆→ Γ
∆ ` aσ : Aσ

Γ ` A
p : Γ.A→ Γ

Γ ` A
Γ.A ` q : Ap

σ : ∆→ Γ Γ ` A ∆ ` a : Aσ
(σ, a) : ∆→ Γ.A

If we have a type Γ ` A and a dependent type or term over A, say Γ.A ` B,
the operation to substitute a term of A, say Γ ` a : A, is represented in a CwF
as follows. We have the identity context morphism 1 : Γ → Γ and hence we
can form (1, a) : Γ→ Γ.A which we usually denote by [a] : Γ→ Γ.A; this gives
a type Γ ` B[a].

Remark 1.1.3. Terms Γ ` a : A are in a one-to-one correspondence with
sections s : Γ→ Γ.A of p : Γ.A→ Γ, i.e., ps = 1,

Γ.A Γ

p

s

1Γ

and, moreover, all sections are of the form [a] for some Γ ` a : A.

As the definition of CwF is an instance of a generalized algebraic theory [34,
Section 2.2], there is a notion of morphism of CwFs: we have to give opera-
tors for each of the different sorts preserving the required equations. We will
however not make use of this notion and refer the reader to [22, Section 11]
for the precise definition.

A mere CwF does not give much structure and only models type depen-
dencies. We are interested in CwFs that have more structure.

A CwF supports Π-types if it is closed under the following rules:

Γ ` A Γ.A ` B
Γ ` ΠAB

Γ.A ` b : B
Γ ` λ b : ΠAB

Γ ` u : ΠAB Γ ` a : A
Γ ` app(u, a) : B[a]

Furthermore, we require the operations to satisfy β- and η-laws

app(λ b, a) = b[a]
u = λ app(up, q)

24 Chapter 1. Semantics of Martin-Löf Type Theory

and laws for commutation with substitutions:

(ΠAB)σ = Π(Aσ)(B(σp, q))
(λ b)σ = λ (b(σp, q))

app(u, a)σ = app(uσ, aσ)

Note that these equations only make sense in the appropriate types. For,
e.g., (λ b)σ = λ (b(σp, q)) to make sense, we need the equation (ΠAB)σ =
Π(Aσ)(B(σp, q)).

Likewise, a CwF supports Σ-types if it is closed under the following rules:

Γ ` A Γ.A ` B
Γ ` ΣAB

Γ ` a : A Γ ` b : B[a]
Γ ` (a, b) : ΣAB

Γ ` u : ΣAB
Γ ` pu : A

Γ ` u : ΣAB
Γ ` qu : B[pu]

Note that we overload the notation for pairs and projections in Σ-types with
the notation for context morphisms as they are required to satisfy similar
equations:

p(a, b) = a

q(a, b) = b

u = (pu, qu)

and the laws for substitutions:

(ΣAB)σ = Σ(Aσ)(B(σp, q))
(a, b)σ = (aσ, bσ)
(pu)σ = p(uσ)
(qu)σ = q(uσ)

Note that the above definitions for a CwF to support a type former are
rather direct from the corresponding syntactical formulation. A morphism of
CwFs between CwFs supporting a certain structure (like Π-types) preserves
this structure if the type and term formers are preserved.

Since it is slightly easier to use later on, we use Paulin-Mohring’s formu-
lation of the identity type [68]. A CwF supports identity types if it is closed
under the following rules:

Γ ` A Γ ` a : A Γ ` b : A
Γ ` IdA(a, b)

Γ ` a : A
Γ ` refl a : IdA(a, a)

Γ ` A Γ ` a : A Γ.A. IdAp(ap, q) ` C
Γ ` v : C[a, refl a] Γ ` b : A Γ ` p : IdA(a, b)

Γ ` J(a, v, b, p) : C[b, p]

1.1. Categories with Families 25

Where [b, p] is the substitution ([b], p) : Γ → Γ.A. IdAp(ap, q). As before, we
require that the operations commute with substitution:

(IdA(a, b))σ = IdAσ(aσ, bσ)
(refl a)σ = refl(aσ)

(J(a, v, b, p))σ = J(aσ, vσ, bσ, pσ)

where in the last equation J on the right hand side is w.r.t. C, and on the left
hand side w.r.t. C(σp, q). (Note that J depends on C although suppressed in
our syntax.) Additionally, we require

J(a, v, a, refl a) = v. (1.1)

The identity type of the model we consider later in Chapter 3 will not satisfy
equation (1.1). For this reason we say that a CwF supports weak identity
types if all conditions of identity types except equation (1.1) are satisfied but
where equation (1.1) holds only propositionally, i.e., only up to a witness of a
respective identity type, that is, we require the rule

Γ ` A Γ ` a : A Γ.A. IdAp(ap, q) ` C Γ ` v : C[a, refl a]
Γ ` JEq(a, v) : IdC[a,refl a](v, J(a, v, a, refl a))

such that (JEq(a, v))σ = JEq(aσ, vσ).
There are usually two different ways to introduce a universe to dependent

type theory: universes à la Tarski and universes à la Russell. A universe à
la Tarski contains codes of the actual types and is equipped with a function
decoding codes into types, where as a universe à la Russell has types as its
elements. We will use a variant of a universe à la Tarski but in a formulation
which is less general but simpler and is sufficient for the universes we consider
(cf. Section 1.2.4).

Definition 1.1.4. A universe in a CwF (C,F) is a CwF U = (C,F0) on the
same category of contexts and substitutions such that TyF0(Γ) ⊆ TyF (Γ) and
TerF0(Γ;A) = TerF (Γ;A) if A ∈ TyF0(Γ), and the context operations of U are
inherited from (C,F). We write Γ ` A Type0 for A ∈ TyF0(Γ) and call A a
U-small type; thus we require:

Γ ` A Type0

Γ ` A

Moreover, we require that there is a type 1 ` U (writing also U for Uσ for the
(unique) substitution σ : Γ→ 1) equipped with coding and decoding functions

1 ` U
Γ ` A Type0

Γ ` pAq : U
Γ ` T : U

Γ ` ElT Type0

Uσ = U pAqσ = pAσq (ElT)σ = El(Tσ)

26 Chapter 1. Semantics of Martin-Löf Type Theory

satisfying the equations

El pAq = A and pElTq = T. (1.2)

If (C,F) supports Π-types, we say that the universe U supports Π-types if
(C,F0) is closed under the induced Π-types, or in other words if U supports
Π-types and the inclusion CwF-morphism U ↪→ (C,F) preserves Π. Similarly
for other type formers.

Note with the equations (1.2) there is no need to require coding functions
for the type formers which simplifies the treatment of universes significantly.
E.g., for Π-types given Γ ` a : U and Γ.El a ` b : U we can define Γ ` π a b : U
by

π a b = pΠ(El a)(El b)q
which satisfies El(π a b) = Π(El a)(El b).

1.2 Presheaf Models of Type Theory
We will now show how any presheaf category gives rise to a category with
families where the contexts are presheaves. Let us first recall the notion of
presheaf.

Definition 1.2.1. Let C be a category. A presheaf on C is a contravariant
functor from C into Set. The category of presheaves on C, denoted by Psh(C)
or sometimes Ĉ, is the functor category [Cop,Set]. In particular its morphisms
are natural transformations.

Let us now fix a small category C. In this section, we denote objects of C
by I, J,K and morphisms by f, g, h. In what follows we describe how Psh(C)
induces a CwF where the category of contexts is Psh(C).

So a context Γ ` is a presheaf Γ on C is a functor Γ: Cop → Set, i.e., we
are given a set Γ(I) for each I in C, and functions Γ(I)→ Γ(J), ρ 7→ ρf (called
restriction, and written as f acting on the right) for each f : J → I, such that

ρ1 = ρ and (ρf)g = ρ(fg)

for g : K → J and f : J → I. In this section we will sometimes refer to the
map ρ 7→ ρf as Γf .

The empty context 1 is the terminal presheaf which is constant a singleton
{?}.

A context morphism σ between contexts Γ and ∆ is then a natural trans-
formation σ : ∆→ Γ, i.e., for each I in C there is a map σI : ∆(I)→ Γ(I) such
that for any f : J → I the square

∆(I) Γ(I)

∆(J) Γ(J)

σI

∆f Γf

σJ

1.2. Presheaf Models of Type Theory 27

commutes, i.e., Γf ◦ σI = σJ ◦∆f . From now on we will suppress writing the
subscripts to σ; this way, if we write Γf and ∆f as f acting on the right again,
the equation simply becomes

(σρ)f = σ(ρf)

for ρ in ∆(I).
Next, we describe how to give a dependent type Γ ` A in a context Γ `.

For each object I ∈ C and ρ ∈ Γ(I) we require a set Aρ, and for each f : J → I,
we require a function Aρ → A(ρf), written as a 7→ af satisfying a1 = a and
afg = a(fg) if g : K → J . Note that we tacitly suppressed the dependence
on I in Aρ in our notation to keep it lighter; similarly we omit I and ρ in
af . Substitution ∆ ` Aσ with σ : ∆ → Γ is simply given (Aσ)ρ = A(σρ) for
ρ ∈ ∆(I), together with the induced map

(Aσ)ρ = A(σρ)→ A((σρ)f) = A(σ(ρf)) = (Aσ)(ρf)

for f : J → I. Clearly, this satisfies the required equations for substitutions.
Note that types in the empty context 1 ` A correspond exactly to contexts

A `. We will usually write ` A instead of 1 ` A.
The definition of a dependent type can also be rephrased more categorically:

A is a presheaf on
∫
C Γ, where

∫
C Γ is the category of elements of the presheaf

Γ, defined as follows:

• objects are pairs (I, ρ) where I ∈ C and ρ ∈ Γ(I);

• a morphism (J, ρ′) → (I, ρ) is a morphism f : J → I in C such that
ρ′ = Γfρ.

Note that substitution of A : (
∫
C Γ)op → Set with σ : ∆ → Γ corresponds to

precomposing with
∫
C σ :

∫
C ∆→

∫
C Γ induced by σ. (In fact, this construction

induces a functor
∫
C : Psh(C)→ Cat.)

A term Γ ` a : A of a dependent type Γ ` A is given by a family of
elements aρ ∈ Aρ for each I in C and ρ ∈ Γ(I), such that aρf = a(ρf) for
each f : J → I. The substitution ∆ ` aσ : Aσ with σ : ∆→ Γ is given by the
family (aσ)ρ = a(σρ).

For Γ ` A, the context extension Γ.A ` is defined by

(Γ.A)(I) = {(ρ, u) | ρ ∈ Γ(I) and u ∈ Aρ} for I ∈ C
(ρ, u)f = (ρf, uf) for f : J → I

and the projections are defined by p : Γ.A→ Γ, p(ρ, u) = ρ, and Γ.A ` q : Ap
by q(ρ, u) = u. Now assume σ : ∆→ Γ and ∆ ` a : Aσ; we define (σ, a) : ∆→
Γ.A by (σ, a)ρ = (σρ, aρ). One readily checks that this satisfies all the required
equations; this concludes the definition of the CwF associated to a presheaf
category.

28 Chapter 1. Semantics of Martin-Löf Type Theory

For later use let us recall the Yoneda Lemma: the Yoneda embedding is
the functor y : C → Ĉ is given by yI = HomC(−, I), i.e.,

(yI)(J) = HomC(J, I) for I an object of C
(yI)f : (yI)(J)→ (yI)(K), g 7→ fg for f : K → J in C.

The Yoneda functor is fully faithful and we have for a presheaf Γ,

Γ(I) ∼= HomPsh(C)(yI,Γ)

both natural in Γ and I. A presheaf Γ is representable if it is naturally iso-
morphic to a yI for some I.

1.2.1 Dependent Products
As a motivation for the definition of dependent products let us recall how
to define exponents in presheaf categories. Let Γ and ∆ be presheaves and
suppose we already know how the exponent ∆Γ is constructed. Then we get
by the Yoneda Lemma and the fact that −Γ should be right adjoint to −× Γ,
that

(∆Γ)(I) ∼= Hom(yI,∆Γ)
∼= Hom(yI × Γ,∆)

The latter can now be taken as a definition. So an element w of (∆Γ)(I) is a
natural transformation w : yI × Γ→ ∆, so it is given by functions

wJ : (yI)(J)× Γ(J)→ ∆(J),

and the naturality condition becomes (wJ(f, ρ))g = wK(fg, ρg) for f : J → I,
ρ ∈ Γ(J), and g : K → J .

We will now show that the CwF associated to a presheaf category supports
Π-types. Given Γ ` A and Γ.A ` B we have to define Γ ` ΠAB, that is, we
have to define the set (ΠAB)ρ for I ∈ C and ρ ∈ Γ(I). The elements w of
(ΠAB)ρ are families w = (wf | J ∈ C, f : J → I) of (dependent) functions
such that

wfu ∈ B(ρf, u) for J ∈ C, f : J → I, and u ∈ A(ρf),

with the requirement that for g : K → J

(wfu)g = wfg(ug).

For such a family w ∈ (ΠAB)ρ, the restriction wf ∈ (ΠAB)(ρf) for f : J → I
is defined by taking

(wf)gu = wfgu ∈ B(ρfg, u)

where g : K → J and u ∈ A(ρfg). (Note that this needs ρfg = ρ(fg).) This
definition satisfies w1 = w and wfg = w(fg).

1.2. Presheaf Models of Type Theory 29

Now let Γ.A ` b : B; we have to define Γ ` λ b : ΠAB, that is, give
(λ b)ρ ∈ (ΠAB)ρ. For f : J → I and u ∈ A(ρf) we set

((λ b)ρ)fu = b(ρf, u) ∈ B(ρf, u).

This satisfies for g : K → J

(((λ b)ρ)fu)g = (b(ρf, u))g = b(ρ(fg), ug) = ((λ b)ρ)fg(ug)

and defines a term since

(((λ b)ρ)f)gu = ((λ b)ρ)fgu = b(ρfg, u) = ((λ b)(ρf))gu.

To define the application let Γ ` u : ΠAB and Γ ` v : A, and we set
app(u, v)ρ = (uρ)1(vρ) ∈ B(ρ, vρ), thus app(u, v)ρ ∈ B[v]ρ as (ρ, vρ) =
(1, v)ρ = [v]ρ. β-equality is readily checked

app(λ b, v)ρ = ((λ b)ρ)1(vρ) = b(ρ, vρ) = b[v]ρ,

and similarly for η-equality and the other equations.
It is also possible to calculate the dependent product using the Yoneda

Lemma similar to exponents (i.e., non-dependent products); this does however
not add much to the explanation so we have refrained from adding it.

Remark 1.2.2. It is worthwhile to note that there is a simpler way to describe
the sections of Π-types. Given a section Γ ` w : ΠAB it satisfies (wρ)f =
((wρ)f)1 = (w(ρf))1 by definition. This entails that w is determined by the
(wρ)1’s and moreover we have

((wρ)1a)f = (wρ)f (af) = (w(ρf))1(af).

Conversely, assume that we have a family ϕ of functions ϕρ such that
ϕρa ∈ B(ρ, a) for a ∈ Aρ satisfying

(ϕρa)f = ϕ(ρf)(af).

This defines a section Γ ` v : ΠAB by putting

(vρ)fa = ϕ(ρf)a.

These assignments are inverse to each other. Using this representation, appli-
cation can be simply written as

app(ϕ, v)ρ = ϕρ(vρ),

and abstraction as (λu)ρ a = u(ρ, a).

30 Chapter 1. Semantics of Martin-Löf Type Theory

1.2.2 Dependent Sums
The interpretation Σ-types Γ ` ΣAB for Γ ` A and Γ.A ` B is defined by

(ΣAB)ρ = {(a, b) | a ∈ Aρ and b ∈ B(ρ, a)}

for ρ ∈ Γ(I), I ∈ C. The restrictions are defined componentwise (a, b)f =
(af, bf) for f : J → I. The pairing operation Γ ` (u, v) : ΣAB of Γ ` u : A
and Γ.A ` v : B[u] is defined by the componentwise pairing: (u, v)ρ = (uρ, vρ).
Likewise for the projections p and q, (pw)ρ = a and (qw)ρ = b for wρ = (a, b).
This validates the necessary equations.

1.2.3 Identity Types
There is also a “standard” interpretation for identity types in a presheaf model.
However, this is not the interpretation we are interested in since it is proof
irrelevant and satisfies uniqueness of identity proofs. Thus we will only briefly
sketch the definition: for Γ ` A, Γ ` a : A, and Γ ` b : A, the identity type
is given by (IdA(a, b))ρ = {∗ | aρ = bρ}. This allows an interpretation for the
rules of identity types, e.g., (refl a)ρ = ∗; this interpretation is such that the
equation (1.1) on page 25 holds. In the rest of this part, we will not make
further use of this identity type.

1.2.4 Universes
We will now show how to lift a universe à la Grothendieck in the underlying
set theory to the presheaf model following [48, 74].

Assume a universe of small sets, say Set0 ∈ Set, and call the elements
small sets. From this we will now give a type-theoretic universe. We recall
from Definition 1.1.4 that to give a type-theoretic universe we have to first
single out the small types: the judgment Γ ` A Type0 is defined to mean that
for each ρ ∈ Γ(I), the set Aρ is small, i.e., Aρ ∈ Set0. In this case we call A a
small type (in context Γ). We clearly have that any small type is a type, i.e.:

Γ ` A Type0

Γ ` A

Since our underlying universe of small sets Set0 is closed under set-theoretic
operations we get that the small types Γ ` A Type0 form itself a CwF of small
types supporting the discussed type forming operations like Π, Σ, and are
closed under substitution.

Next, we have to give the type of codes for small types in the empty context
` U . This is the same as giving a context U `. The definition has to be such
that for each small type Γ ` A Type0 there is a code Γ ` pAq : U , and for each
section of U , say Γ ` T : U , there is a small type Γ ` ElT Type0 satisfying:

ElpAq = A pElTq = T

1.2. Presheaf Models of Type Theory 31

We now define U as a context. For I ∈ C, U(I) consists of small types

yI ` A Type0

where y denotes the Yoneda embedding. The restrictions are as well given by
the Yoneda embedding: if f : J → I and A ∈ U(I), that is, yI ` A is small,
then the restriction Af ∈ U(J) is defined to be the small type yJ ` Ayf ,
where yf : yJ → yI.

Let us unfold the above definition: for I ∈ C, U(I) consists of small types
yI ` A Type0, that is, for each f with cod f = I a small set Af (we use a
subscript to not confuse the set Af with the restriction of A along f written
as Af), and A comes together with maps Af → Afg, a 7→ ag for g : K → J ,
f : J → I such that a1 = a and agh = a(gh) for h : L → K. The restriction
U(I)→ U(J) along f : J → I is (Af)g = Ayfg = Afg for g : K → J .

In other words, the elements of U(I) can also be described as Set0-valued
presheaves on C/I (the slice category over I), i.e., [(C/I)op,Set0], with the
restriction induced by C/f : C/J → C/I. This is reflected by the equivalence
of categories:

C/I ≈
∫
C

yI

Next, we define a small type Γ ` ElT given Γ ` T : U . For ρ ∈ Γ(I) we
have Tρ ∈ U(I) and set (ElT)ρ = (Tρ)1I

which is a small set. The required
map (ElT)ρ→ (ElT)ρf for f : J → I is defined to be the given map (Tρ)1 →
(Tρ)f , which makes sense since (ElT)ρf = (Tρf)1 = ((Tρ)f)1J

= (Tρ)f .
If σ : ∆→ Γ and Γ ` T : U , then (ElT)σ = El(Tσ) since for ρ ∈ ∆(I)

((ElT)σ)ρ = (ElT)(σρ) = (T (σρ))1 = ((Tσ)ρ)1 = (El(Tσ))ρ.

Last, we define the code Γ ` pAq : U of a small type Γ ` A Type0. For
ρ ∈ Γ(I) we define pAqρ ∈ U(I) as the small type yI ` pAqρ given by
(pAqρ)f = A(ρf) for f ∈ (yI)(J), i.e., f : J → I; and the induced restriction
maps

(pAqρ)f = A(ρf)→ A(ρf)g = A(ρ(fg)) = (pAqρ)fg.

The verification of pAqσ = pAσq for a substitution σ : ∆ → Γ is straightfor-
ward.

It remains to check the equation (1.2) of Definition 1.1.4: we have that

(ElpAq)ρ = (pAqρ)1 = A(ρ1) = Aρ,

and likewise

(pElTqρ)f = (ElT)(ρf) = (T (ρf))1 = (Tρ)f .

Analogously, one can lift a hierarchy of Grothendieck universes Set0 ∈
Set1 ∈ · · · ∈ Setn ∈ · · · ∈ Set to a type-theoretic hierarchy of universes
U0, U1, . . . , Un, . . . with corresponding coding and decoding machinery.

32 Chapter 1. Semantics of Martin-Löf Type Theory

Chapter 2

Cubical Sets

This chapter introduces cubical sets and discusses their relationship to nominal
sets. Cubical sets are presheaves on the cubical category ��� introduced in
Section 2.1.

2.1 The Cubical Category
We fix a countably infinite and discrete set of atomic names A which will serve
as explicit names for dimensions. We will denote elements of A by x, y, z, . . .
and call them names. Later we will also assume that given a finite set of names
I ⊆ A there is a fresh name xI . The choice of the set A is irrelevant—what
counts is that we can decide the equality of names. We will also assume that
there are two elements 0 and 1 called directions which are not names; we will
usually use c, d to denote directions; we write c̄ for flipping the direction, i.e.,
c̄ = 1− c. We set 2 = {0, 1}.

Definition 2.1.1. The cubical category ��� has as objects finite subsets of the
fixed set of names A, usually denoted by I, J,K, A morphisms f : I → J
is given by a set-theoretic function f : I → J ∪ 2 such that for x, y ∈ I with
f x, f y /∈ 2 we have

f x = f y implies x = y,

i.e., f is injective when restricted to its defined elements

def(f) = {x ∈ I | f x 6∈ 2}.

The composition of two morphism f : I → J and g : J → K is given by

(g ◦ f)x =
{
g(fx) if x ∈ def(f),
fx otherwise.

For the composition of two morphisms f and g as above we also write
fg = g ◦ f , i.e., we use diagram order. For finite sets of names we will write

34 Chapter 2. Cubical Sets

commas instead of unions and often omit curly braces; e.g., we write I, x, y for
I ∪ {x, y}, and I − x, y for the set-difference of I with {x, y}. From now on, if
not stated otherwise, we assume that f, g, h range over morphisms in ���.

The face maps are morphisms (x = 0), (x = 1): I → I − x for x ∈ I
sending x to 0 and 1, respectively; so in particular def (x = c) = I − x. For
I ⊆ J , we call the inclusion map I → J a degeneracy map; in particular,
if x /∈ I, we denote the inclusion I ⊆ I, x by sx : I → I, x. For x, y /∈ I
the renaming (x = y) : I, x→ I, y sends x to y and leaves the rest untouched.
(Note that it is crucial that both x and y are not in I, otherwise the injectivity
condition on defined elements is violated.) For x, y ∈ I the swapping of x and
y, (x y) : I → I, is defined by

(x y)z =

y if z = x,

x if z = y,

z otherwise.

Note that with the standard programming trick to swap two variables using
assignments and a third variable, we can write a swap (x y) : I, x, y → I, x, y
(where x, y /∈ I) as a composition of renamings: with a fresh z we have

I, x, y I, x, y

I, y, z I, x, z

(x y)

(x=z)
(y=x)

(z=y)

For f : I → J set f − x : I − x → J − fx to be f restricted to I − x with
adapted codomain (where J−fx = J if fx is 0 or 1). Similarly we can extend
f : I → J for x /∈ I and a a name, 0, or 1, to (f, x = a) : I, x → J, a (by
convention, J, 0 = J, 1 = J).

We call f : I → J strict if def(f) = I.
The following lemma (whose proof is trivial) gives a factorization of any

morphism as composition of faces, swapping (or renaming), and a degeneracy
map.

Lemma 2.1.2. Any f : I → J can be uniquely as f = f01g where f01 : I →
def(f) is a composition of face maps and g : def(f) → J is a strict map.
Moreover, if I0 = ~x = f−1(0) and I1 = ~y = f−1(1), then f01 = (~x = 0)(~y = 1),
and we have a commuting square

I J

def(f) im(f)

f

f01

f ′

g

where f ′ is a bijection (and thus can be written a composition of transpositions,
i.e., swappings, and thus also as a composition of renamings).

2.2. Cubical Sets 35

2.2 Cubical Sets
Similar to simplicial sets, cubical sets are defined as presheaves.

Definition 2.2.1. A cubical set X is a functor X : ��� → Set, i.e., X is a
presheaf over ���op.

That is, a cubical set X is given by sets X(I) for each finite set of names
I, and for each morphism in f : I → J in ���, a function X(I)→ X(J), u 7→ uf
such that

u1 = u and ufg = u(fg)

for f : I → J and g : J → K in ���. Note that the latter equation is the reason
for the use of the diagram order for composition in ���; this enables us to write
the action of a morphism on the right and still have the arrows from ��� and
not its opposite category.

As with any presheaf category, the morphisms between cubical sets are
given by natural transformations. This makes cubical sets into a category,
denoted by cSet.

For u ∈ X(I) and x ∈ I we can form the faces u(x = 0) ∈ X(I − x) and
u(x = 1) ∈ X(I−x) of u. In this way, we can think of u as a “line” connecting
u(x = 0) and u(x = 1) along x, written as

u(x = 0) u(x = 1)u
x (2.1)

We sometimes omit the subscript x in (2.1) if irrelevant or clear from the
context.

In this way one can think of an element u in X(I) as a hypercube of
dimension |I|, and we call the elements of X(I) also I-cubes. For example, if
u in X(x, y), x 6= y, first note that u(x = c)(y = d) = u(y = d)(x = c) and
thus with ucd = u(x = c)(y = d) we get a cube (indicating the naming of the
dimensions on the right)

u01 u11

u

u00 u10

u(y=1)

u(x=0)

u(y=0)

u(x=1) y

x

This cube should be thought as a “solid” cube, filled by u. Note that there is
no “diagonal” in this cube, i.e., a face of u which connects u00 with u11.

For an I-cube u and an x /∈ I, we can consider the degenerate usx ∈ X(I, x)
of u, connecting usx(x = 0) = u and usx(x = 1) = u, i.e., u with itself along
x:

u u
usx

x

36 Chapter 2. Cubical Sets

Intuitively, one can think of usx as the line which is constantly u. If w = usx
for some u and x, we write that w # x borrowing notation from nominal sets
(cf. Section 2.3) and say that w is degenerate (along x). Note that it is in
general undecidable whether an element is degenerate.

Summing up, if we have an I-cube u we want to think of it as depending
on the names in I; there are the following basic operations on u: renaming a
name in I with a fresh name, setting one of the variables in I to 0 or 1, and
adding a variable dependency (degeneracy maps).

From the fact that the category of cubical sets is a presheaf category we
know that it has the structure of a topos and thus has a rich structure. In
particular, we have seen in detail in Section 1.2 how cSet gives rise to a
category with families. Let us introduce some examples of cubical sets.

Example 2.2.2. For every set A the discrete cubical set ∆(A) given by the
constant presheaf ∆(A)(I) = A and ∆(A)(f) = 1A.

Example 2.2.3. A particularly natural example, suggested by Peter Aczel,
is given by polynomial rings. Let R be a commutative ring with 1. For
I = x1, . . . , xn let R[I] = R[x1, . . . , xn] denote the polynomial ring with inde-
terminates x1, . . . , xn and coefficients in R. This assignment I 7→ R[I] defines
a cubical set which we denote by R[·]; if f : I → J and p(x1, . . . , xn) ∈ R[I],
pf is given by the polynomial p(fx1, . . . , fxn). So, for example, (1 + x2y +
z)(y = 0) = 1 + z. Note that we assume R[I] ⊆ R[I, x] and degeneracy is an
inclusion: psx = p.

Example 2.2.4. The interval I is defined by I(I) = I∪2 and I(f) : I(I)→ I(J)
for f : I → J is defined by extending (the underlying set-theoretic map of) f
with I(f)(0) = 0 and I(f)(1) = 1. Note that this is a representable cubical set:
fix any name x, then y{x} ∼= I. For example, y{x}∅ = cSet({x}, ∅) consists of
the moprphisms (x = 0), (x = 1): x → ∅; similarly, y{x}{y1, · · · , yn} consists
of the morphisms (x = a) for a ∈ I(y1, · · · , yn).

More generally, we set ���I = yI for a finite set of names I and call it the
standard I-cube. For any I and J with n-elements, we clearly have ���I ∼= ���J ,
and thus it makes sense to speak of ���I of a standard n-cube. The Yoneda
Lemma gives that for a cubical set X, morphisms ���I → X correspond to
the elements of X(I). Note that ���∅ is terminal in cSet, and thus 1 → X
corresponds to X(∅), the points of X.

Note that the product I× I is not isomorphic to ���x,y. The latter does not
contain the diagonal while the former does (cf. also the next example).

Example 2.2.5 (Nerve). To any small category C we associate its (cubical)
nerve N C whose n-cubes are given by n-dimensional cubical commutative dia-
grams, defined as follows. For a finite set of names I we consider {0, 1}I = 2I
as a poset, and hence category. The set (N C)(I) is defined to be the functors
2I → C. Any f : I → J determines a monotone 2f : 2J → 2I , sending α ∈ 2J
to (2fα)(i) = α(fi) for i ∈ I and f defined on i, and (2fα)(i) = fi otherwise;
for θ ∈ (N C)(I), i.e., θ : 2I → C a functor, we set the restriction θf to be
θ2f : 2J → 2I → C.

2.2. Cubical Sets 37

Elements of (N C)(∅) are functors 1 → C, i.e., correspond to objects in C;
elements of (N C)(x) are functors α : {0, 1} → C, i.e., correspond to morphisms
in C (given by α(0 ≤ 1), 0 ≤ 1 denoting the (unique) arrow 0 → 1 etc.);
likewise, elements of (N C)(x, y) are functors θ : 2x,y → C, i.e., correspond to
commuting squares in C (writing 01 for (x 7→ 0, y 7→ 1) ∈ 2x,y etc.)

θ(01) θ(11)

θ(00) θ(10)

θ(01≤11)

θ(00≤01)

θ(00≤10)

θ(00≤11) θ(10≤11)

and so on for higher cubes. Note that N(2I) is in general not isomorphic to
yI (for I = x, y, the cube in the nerve contains a diagonal which is not there
in the standard cube).

Remark 2.2.6. Often, cubical sets are described as presheaves on a category
dual to our cubical category; morphisms are given by certain 2J → 2I (namely
those which come from 2f with f : I → J in the cubical category). This is
used (for a variation of the cubical sets considered here) in [43, Section 4].

The following two definitions are crucial for the rest of this part.

Definition 2.2.7 (Non-dependent Path Space). Let X be a cubical set. The
(non-dependent) path space [I]X is defined by ([I]X)(I) = X(I, xI) (recall
that xI is a chosen fresh name for I). We can extend f : I → J to (f, xI =
xJ) : I, xI → J, xJ , and thus define the restriction along f of ω ∈ ([I]X)(I) by
ωf = ω(f, xI = xJ). (Note that on the left hand side the restriction is in [I]X
whereas on the right hand side it is in X.) This defines a cubical set. Its points
are ([I]X)(∅) = X(x∅), that is, the lines of X; its lines ([I]X)(x) = X(x, y), y
fresh, are the squares of X; and so on.

There is also an alternative definition of [I]X: the elements ([I]X)(I) are
(equivalence classes) of the form 〈x〉p where x /∈ I and p ∈ X(I, x); two such
elements 〈x〉p and 〈y〉q get identified if p(x = y) = q ∈ X(I, y). For f : I → J
we define (〈x〉p)f = 〈z〉(p(f, x = z)) where z is some J-fresh name. The
operation 〈x〉− should be thought of as an abstraction- or binding operation.
Correspondingly, there is also an application of 〈x〉p ∈ ([I]X)(I) to a ∈ {0, 1}
or a a fresh name (i.e., a /∈ I) given by

(〈x〉p) @ a = p(x = a) ∈ X(I, a),

where I, 0 = I, 1 = I by convention. This structure can be seen as the “affine”
exponential of X by I (this can be made precise in the presentation of cubical
sets as nominal sets, cf. 2.4).

Our first definition corresponds to choosing a canonical representative xI
for the bound name. We will mostly use this definition from now on but deviate
whenever appropriate. But note that we also have the operation ω@ a =

38 Chapter 2. Cubical Sets

ω(xI = a) ∈ X(I, a) for a ∈ {0, 1} or a fresh, with ω ∈ ([I]X)(I), and the
operation 〈x〉p = p(xI = x) for p ∈ X(I, x).

Definition 2.2.8 (Non-dependent Identity Type). For a cubical set X and
two global sections u, v ∈ X(∅) we define the (non-dependent) identity type
IdX(u, v) to be the subobject IdX(u, v) ⊆ [I]X such that ω ∈ ([I]X)(I) is an
element of (IdX(u, v))(I) if ω@ 0 = usI and ω@ 1 = vsI , where sI : ∅ → I
denotes the inclusion map; that is, ω is a line along xI connecting u to v (more
precisely, their degenerates).

More generally, we can also define X ×X ` IdX ; for w0 and w1 in X(I),
IdX(w0, w1) are those ω ∈ [I]X such that ω@ 0 = w0 and ω@ 1 = w1.
(The above cubical set IdX(u, v) is given by substituting X ×X ` IdX along
〈u, v〉 : 1→ X ×X.)

As an example, let us come back to the interval I. We have two points
` 0 : I and ` 1 : I given by 0J = 0 ∈ I(J) and likewise 1J = 1. Those two
points are equal via ` seg : IdI(0, 1) given by segJ = 〈x〉x since x ∈ I(J, x)
for x J-fresh.

Remark 2.2.9. It is important to note that this definition (or its dependent
version we will see later) does not justify the axioms for an identity type in
the CwF induced by cSet. Let us illustrate one of the requirements; assume
we have a cubical set X and a dependent type over it, X ` C, and two global
sections of X, ` u, v : X (which correspond to two elements u, v ∈ X(∅)).
Moreover, we have an ` ω : IdX(u, v) and ` p : C[u]. The rules for the
identity type require in particular an inhabitant of ` C[v], i.e., we must be
able to transport the element p along ω to an element in C[v]; but for arbitrary
C there is no hope that we can achieve this as C[v] might be empty even though
C[u] is not! Consider, e.g., the type I ` C defined for ρ ∈ I(I) = I ∪ 2 as
Cρ = ∅ if ρ 6= 0, and Cρ = N if ρ = 0. The restriction maps Cρ → Cρf
is given by the unique map ∅ → Cρf if ρ 6= 0, and given by the identity on
N if ρ = 0 (and thus also ρf = 0). Now seg = 〈x〉x gives a term of type
IdI(0, 1), but there is no map from C[0] = N to C[1] = ∅. Hence we have to
restrict the types in such a way that this property follows—this is the content
of Chapter 3.

Remark 2.2.10. It is possible to justify the introduction rule for this iden-
tity types though: if ` u : X given by the family uI ∈ X(I), define `
reflu : IdX(u, u) by (reflu)I = uIsxI

∈ X(I, xI); note that (reflu)I ∈
(IdX(u, u))(I) as

(reflu)I @ b = uI .

Moreover, this defines a term as for f : I → J ,

(reflu)If = (usxI
)f = usxI

(f, xI = xJ) = (uf)sxJ
.

2.3. Cubical Sets via Nominal Sets 39

2.3 Cubical Sets via Nominal Sets
In this section we give equivalent categories to the category of cubical sets
which are given by nominal sets with extra structure: so called 01-substitutions
introduced in [69]. As studied in [71], the latter can also be presented as
finitely supported M -sets for a suitable monoid M . The theory of nominal
sets provides a mathematical theory of names based on symmetry. For more
background on nominal sets we refer the reader to [70]. Here we follow [71].

We want to think of I-cubes u in a cubical set X, for say I = x1, . . . , xn, as
entities depending on the names x1, . . . , xn, and can emphasize this by writing
u = u(x1, . . . , xn) (similarly to indicate possible dependence of variables in a
formula of predicate logic; see also Example 2.2.3). Now applying a morphism
f : I → J should be thought of as applying a substitution of those names; the
basic operations are renaming a variable into 0 or 1, renaming a variable into
a fresh variable, and adding a (vacuous) variable dependency. E.g., if n = 3
and f = (x1 = y, x2 = 0, x3 = x3) : I → x3, y, z, we think of uf ∈ X(x3, y, z)
as u(y, 0, x3) (with this notation, the application of a degeneracy map is not
explicit).

Nominal sets capture this idea as well: each element in a nominal set
depends on a finite set of names, and we can swap names (governed by suitable
equations). The additional structure of 01-substitutions on a nominal set
allows to set names to 0 or 1.

Definition 2.3.1. A finite substitution is a map π : A → A ∪ 2 such that
{x | πx 6= x} is finite. We denote the monoid of all finite substitutions by Sb:
its monoid operation is given by ππ′ : A→ A∪ 2 defined as (ππ′)(x) = π′(πx)
(note the order) if πx /∈ 2 and (ππ′)(x) = πx for πx ∈ 2; the unit 1 is given by
the inclusion A ↪→ A∪2. The element in Sb transposing x with y for x, y ∈ A
is denoted by (x y); the element (x = b) ∈ Sb for x ∈ A and b ∈ 2 sends x to
b and is the identity otherwise.

Let us assume that M is a submonoid of Sb.

Definition 2.3.2. The category of M-sets is simply the presheaf category
[M,Set] where M is considered as a category (with one element). So such an
M-set Γ is given by a set Γ and an action Γ×M→ Γ satisfying

ρ 1 = ρ (ρ π)π′ = ρ (ππ′)

for ρ ∈ Γ and π, π′ ∈M.
A finite subset I ⊆ A supports an element ρ ∈ Γ if for all π, π′ ∈M,

∀x ∈ I(πx = π′x)→ ρ π = ρ π′. (2.2)

The category of finitely supported M-sets [M,Set]fs is the full subcategory of
M-sets for whose objects Γ every ρ ∈ Γ is finitely supported (i.e., has a support
which is finite).

40 Chapter 2. Cubical Sets

The submonoid Cb of Sb contains those π ∈ Sb satisfying for πx, πy /∈ 2:

πx = πy → x = y

This condition is like the condition for morphisms in the cubical category ���.
This entails the following lemma.

Lemma 2.3.3. For all f : I → J in ��� there exists a π ∈ Cb for which
πx = fx for all x ∈ I.

Proof. See [71].

Theorem 2.3.4. The category of finitely supported Cb-sets [Cb,Set]fs is
equivalent to the category of cubical sets cSet.

Proof. We only define the functor F : cSet→ [Cb,Set]fs and its inverse G on
objects; for the detailed proof we refer the reader to [71]. For a cubical set
X we take the colimit of X in ��� restricted to inclusions I ⊆ J , and define
FX = lim−→I

X(I). So an element in FX is an equivalence class [I, u] with I a
finite set of atoms and u ∈ X(I); two such equivalence classes [I, u] and [J, v]
are equal iff for some K ⊇ I ∪ J , uι = vι′ where ι and ι′ are the inclusions
I ⊆ K and J ⊆ K, respectively. For π ∈ Cb we have that π|I : I → π(I)− 2
is a morphism in ���, and we define [I, u]π = [π(I)− 2, u(π|I)].

Conversely, given a finitely supported Cb-set Y , GY is defined by

(GY)(I) = {u ∈ Y | u is supported by I}.

For u ∈ (GY)(I) and f : I → J , uf := uπ with π as in Lemma 2.3.3; this
doesn’t depend on the choice of π since I supports u, and is well defined since
uπ is supported by π(I)− 2 ⊆ J (cf. [71, Corollary 2.5]).

Let Γ be a finitely supported Cb-set and u ∈ Γ; then u there is a least set of
names supporting u denoted by supp(u) (cf. [71, Definition 2.6]). Then a set of
atoms I supports u iff supp(u) ⊆ I. We write u # v for if supp(u)∩supp(v) = ∅
for u, v ∈ Γ. The set A∪2 becomes a finitely supported Cb-set via xπ = π(x),
0π = 0, and 1π = 1, whose corresponding cubical set is isomorphic to the
interval I; clearly supp(x) = {x} and supp(0) = supp(1) = ∅.

Another way to present finitely supported Cb-sets is as nominal sets with
extra structure.

Definition 2.3.5. The group Per(A) is given by the permutations in Sb, i.e.,
bijections π : A → A such that {x ∈ A | πx 6= x} is finite. The category of
nominal sets Nom is the category of finitely supported Per(A)-sets.

Each finitely supported Cb-set is also a nominal set. The notion of support
w.r.t. the Cb-set structure coincides with the notion of support of nominal sets.

Definition 2.3.6. Let Γ be a nominal set. A structure of 01-substitutions on
Γ is given by operations ((x = c)) : Γ→ Γ for each name x and c ∈ 2 satisfying
for u ∈ Γ:

2.4. Separated Products 41

(a) (u((x = c)))π = uπ((πx = c));

(b) u((x = c)) # x;

(c) u # x→ u((x = c)) = u;

(d) x 6= y → u((x = c))((y = d)) = u((y = d))((x = c)).

The nominal sets with 01-substitutions constitute the object of the category
01Nom whose morphisms are morphisms σ : Γ → ∆ in Nom such that
(σ(u))((x = c)) = σ(u((x = c))).

Lemma 2.3.7. The categories 01Nom and finitely supported Cb-sets are
equivalent. And thus the former is also equivalent to cSet.

Proof. See [71]. The main idea is to use that any element in Cb is a composi-
tion of swaps (x y) and (x = a). The latter are taken care of by the structure
of 01-substitutions ((x = a)).

2.4 Separated Products
The equivalence of cubical sets with nominal sets equipped with 01-substitu-
tions lets us translate important constructions on nominal sets to cubical sets.
Let X and Y be cubical sets and u ∈ X(I); recall that we wrote x # u if u
degenerate along x ∈ I. If also v ∈ Y (I), write u # v if there are u′ ∈ X(J)
and v′ ∈ X(K) for J,K ⊆ I with J ∩K = ∅ such that u = u′ι and v = v′ι′

with ι and ι′ being the respective inclusions J ⊆ I and K ⊆ I. In that case
uf # vf for f : I → I ′ witnessed by u′(f |J) and v′(f |K) and f(J)∩f(K) ⊆ 2
since f is injective on names.

The separated product X ∗ Y of X and Y is given by

(X ∗ Y)(I) = {(u, v) ∈ X(I)× Y (I) | u # v} ⊆ (X × Y)(I)

and componentwise restrictions, making it a sub-cubical set of X × Y .
It is easily verified that for J,K disjoint, we have

yJ ∗ yK ∼= y(J ∪K).

Moreover, −∗Y extends to a functor which has a right adjoint Y (−, which
we have already seen in Definition 2.2.7 as [I]− in the special case of Y = I.

The functor on cubical sets Y (− is given by

(Y (Z)(I) = cSet(Y ∗ yI, Z)

for Z in cSet (this is natural in I and Z, and thus induces a endo-functor on
cSet). That this is adjoint to −∗Y follows from the fact that −∗Y commutes
with colimits.

Let us sketch that [I]X is isomorphic to I(X. Define the map ϕ : [I]X →
(I(X) as follows: let (a, f) ∈ (I ∗ yI)(J), i.e., a ∈ I(J) and f : I → J with

42 Chapter 2. Cubical Sets

a # f ; the latter yields that f = f ′ι with f ′ : I → J − a and ι the inclusion
I − a ⊆ I. We define for 〈x〉ω in ([I]X)(J)

ϕ(〈x〉ω)(a, f) = ω(f ′, x = a) ∈ X(J).

One can check that ϕ(〈x〉ω) is an element in (I (X)(J), and that ϕ is a
morphism. The inverse ψ : (I(X)→ [I]X is given for θ ∈ (I(X)(I) by

ψθ = 〈x〉θ(x, sx)

for x fresh, so x # sx. One can check that this defines a morphism, which is
indeed an inverse of ϕ.

Chapter 3

Kan Cubical Sets

As we have seen in the last chapter it is not possible to justify the elimination
rules for the identity types defined from path spaces in the cubical set model.
In this chapter we will introduce the notion of when a type Γ ` A is a uniform
Kan type; restricting to types with this condition is sufficient to justify the
elimination rule for identity types defined from path spaces. The main work
is to show that this notion is closed under the type formers.

3.1 The Uniform Kan Condition
The uniform Kan condition is about requiring fillers of “open box” like shapes.
It is reminiscent of Daniel Kan’s original extension axiom in [53]. Kan intro-
duced this notion in order to give a combinatorial definition of homotopy
groups. To simplify the discussion of the filling condition we will first only
introduce the non-relative case. Let us first introduce these open box shapes
and operations on them; these shapes correspond to horns in simplicial sets.

Definition 3.1.1 (Open Boxes). Let I be a finite sets of names, x, J ⊆ I with
x /∈ J and a ∈ {0, 1}. The triple S = ((x, a); J ; I) is called an open box shape
on I; its indices 〈S〉 are given by

〈S〉 = {(y, c) | c ∈ 2, y ∈ J, x and (y, c) 6= (x, a)} = {(x, ā)} ∪ J × 2.

If a = 1, we call S a +-shape; otherwise, i.e., a = 0, a −-shape.
Let X be a cubical set. An S-open box in X (or simply open box) is given

by a family ~u indexed by 〈S〉 such that uyb ∈ X(I − y) for (y, b) ∈ 〈S〉 and
such that ~u is adjacent compatible, i.e., for all (y, b), (z, c) ∈ 〈S〉 with y 6= z we
have

uyb(z = c) = uzc(y = b) (3.1)

The element uxā of an S-open box ~u is called the principal side of ~u and x its
principal direction; the sides uyc, for y ∈ J , are called its non-principal sides,

44 Chapter 3. Kan Cubical Sets

and J its non-principal directions. We assume that the first entry v in ~u = v,~v
is its principal side.

For f : I → K with x, J ⊆ def(f) and an S-open box ~u in I, we define the
open box ~uf given by the components uyb(f − y) ∈ X(K − fy); this gives in
an Sf -open box where Sf = ((fx, a); fJ ;K) for S = ((x, a); J ; I) and where
fJ denotes the image of J under f.

Definition 3.1.2 (Kan Cubical Set). A uniform Kan cubical set X, or simply
Kan cubical set, is a cubical set X equipped with the following filling oper-
ations. For each open box shape S and S-open box ~u in X, we require and
element

[X]S~u ∈ X(I)

such that for (y, b) ∈ 〈S〉

([X]S~u)(y = b) = uyb

and additionally for each f : I → K with x, J ⊆ def(f) the following uniformity
condition (or coherence condition):

([X]S~u)f = [X]Sf (~uf) (3.2)

If S is a +-shape, we denote [X]S~u by X↑S~u; and if S is a −-shape by X↓S~u.
Moreover, we usually suppress the shape of the box and tacitly assume that
an open box fits the filling operator. We also give names to the face in the
principal direction

X+~u = (X↑~u)(x = 1) and X−~u = (X↓~u)(x = 0)

and call them the induced composition operations.
It is also possible to consider a cubical set X with only composition oper-

ations: for each open box shape S = ((x, a); J ; I) and S-open box we require
|X|S~u ∈ X(I − x) such that for (y, b) ∈ 〈S〉, (|X|S~u)(y = b) = uyb(x = a) and
for f : I − x→ J defined on I − x, we require the uniformity conditions

(|X|S~u)f = |X|Sf ′(~uf ′)

with f ′ = (f, x = z) : I → J, z for z fresh w.r.t. J . (One should consider the
name x in |X|S~u ∈ X to be bound.) The induced composition operations of a
Kan cubical set are composition operations in this sense.

We emphasize that the above definition requires a fixed choice of fillers of
open boxes and is thus equipped with “algebraic” operations, and this algebraic
presentation is crucial in order to formulate the uniformity condition (3.2). A
similar notion for simplicial sets is that of an algebraic Kan complex [65]. But
note that these come without additional equations like the uniformity condition
above. Similar operations for semi-simplicial sets have been considered in [11].

We will sometimes refer to the operations of a Kan cubical set as its Kan
structure.

3.1. The Uniform Kan Condition 45

Let us analyze the filling operations of a uniform Kan cubical set X in low
dimensions. The simplest case is where J is empty (with the same notations
as in the definition above): a corresponding open box, for say a = 1, is simply
given by an element ux0 ∈ X(I − x); the filler X↑ux0 is an element in X(I)
with (X↑ux0)(x = 0) = ux0. Thus if say y ∈ I, this gives a square:

ux0

w

X+ux0

v

X↑ux0

y

x

By definition the right hand face is the composition X+ux0 ∈ X(I − x).
But what about the top and bottom faces v and w? The uniformity con-
ditions guarantee that the filling operation commutes with the face operations
(y = 1) and (y = 0), and thus we know that v = X↑(ux0(y = 1)) and
u = X↑(ux0(y = 0)). Moreover, if ux0 happens to be degenerate along y, the
uniformity condition entails that X↑ux0 = vsy.

Let us now assume that J = y; then an open box of the corresponding
shape comes with three elements: ~u = ux0, uy0, uy1 such that ux0 ∈ X(I − x)
and uy0, uy1 ∈ X(I − y), and that ux0(y = b) = uyb(x = 0) for b ∈ 2. Thus
the situation can be depicted as a “U-shape” whose filler X↑~u ∈ X(I) is as
indicated:

ux0

uy0

X+~u

uy1

X↑~u

y

x

If we also have another z ∈ I this situation also can be depicted as follows,
where the filler X↑~u is the whole cube (omitting the arrow tips):

ux0

uy0

uy1

yz

x

The uniformity conditions ensure that the top face (z = 1) of the cube is
the filler of the top “U-shape” ~u(z = 1); and likewise for the bottom. And
similarly, if all of the sides in ~u are degenerate in direction z, the filling cube
is the degenerate of the filling square of the top “U-shape” (which is in this
case equal to the lower one).

46 Chapter 3. Kan Cubical Sets

And so on: with J having two elements, corresponding open boxes become
cubes with a missing side and missing interior etc.

(But note that the uniformity conditions say nothing about how two filling
operations for different cardinalities of the J parameter relate.)

Lemma 3.1.3. Let R be a commutative ring. The cubical set P = R[·] induced
by R as defined in Example 2.2.3 is a Kan cubical set.

Proof. Let S = ((x, a); J ; I) and ~p an open box of shape S in P . We will
construct the filler p = [P]S~p by an iterated linear interpolation. First we
define pJ ∈ R[I] such that pJ(y = b) = pyb for y ∈ J by induction on the size
of J : we start with p∅ = 0; if J = z,K, we set

pz,K = pK + (1− z)(pz0 − pK(z = 0)) + z(pz1 − pK(z = 1)).

Note that if K = ∅, this pz is simply the linear interpolation

pz = (1− z)pz0 + zpz1.

We have for b ∈ 2, pz,K(z = b) = pK(z = b) + pzb − pK(z = b) = pzb and for
y ∈ K with the IH and the fact that ~p is adjacent compatible:

pz,K(y = b) = pK(y = b) + (1− z)
(
pz0(y = b)− pK(y = b)(z = 0)

)
+ z
(
pz1(y = b)− pK(y = b)(z = 1)

)
= pyb + (1− z)

(
pyb(z = 0)− pyb(z = 0)

)
+ z(pyb(z = 1)− pyb(z = 1)) = pyb

As a last step we define the filler p ∈ R[I] in case a = 1 by

p = pJ + (1− x)(px0 − pJ(x = 0))

and analogously for a = 0. This has the correct faces and the definition
is independent on the order we chose to pick the names of J as is readily
checked. The definition satisfies the uniformity conditions: observe that (pJ)f
for f defined on J is the same as the corresponding polynomial for the pyb(f−y)
with y ∈ J ; similarly, this extends to pf for f defined on x, J .

Lemma 3.1.4. The cubical nerve N(G) of a (small) groupoid G is a Kan
cubical set.

Proof. Let S = ((x, 1); J ; I) and ~u an S-open box in N(G). The proof for
−-open boxes is similar. In case J = ∅, we define the filling of ~u (which
only consists of ux0) by usx. This clearly satisfies the required uniformity
conditions. In case J contains at least two elements, we argue that the input
box ~u already contains all the needed edges and can be uniquely considered
as an I-cube: we define the filler u : 2I → G on an object α : I → 2 by
uα = uyb(α−y) for αy = b with (y, b) ∈ 〈S〉. Note that there has to exist such
a (y, b) since J 6= ∅. Also, this is well defined since ~u is adjacent compatible.

3.1. The Uniform Kan Condition 47

On morphisms α ≤ β we first define u(α ≤ β) as follows. If both αy = βy = b
for some (y, b) ∈ 〈S〉, then we take uyb(α − y ≤ β − y). Otherwise, there are
(y, b), (z, c) ∈ 〈S〉 with αy = b and βz = c with y 6= z since J contains at least
two elements; then we take

uzc((β−z, x = 0) ≤ β−z)◦ux0(α−x ≤ β−x)◦(uyb((α−y, x = 0) ≤ α−y))−1

which is forced by the groupoid structure. This determines u uniquely from
the fact that u has to have ~u as corresponding faces.

It remains the case where J consists exactly of one element, say y. We
construct the filler by induction on I − (x, J) together with showing that the
filler is unique, and hence satisfies the required uniformity conditions. In case
I − (x, J) is empty, we construct the composition as follows:

uy0

ux0

uy1

uy1ux0u
−1
y0

This also determines the filler u ∈ (N(G))(x, y) since the diagram commutes,
and is unique by the groupoid structure. Now in case, I−(x, J) contains z, we
inductively fill ~u(z = 0) and ~u(z = 1) to unique uz0 and uz1 in (N(G))(I − z),
respectively. Now we define the filler u ∈ (N(G))(I) of ~u as the filler of the
extended open box ~u, uz0, uz1 (which we already constructed above). If u′ ∈
(N(G))(I) is another filler of ~u, then by IH, u′(z = b) has to be equal to uzb,
and hence to u(z = b). But then u and u′ are both also fillers of ~u, uz0, uz1
which we have shown to be unique above.

Definition 3.1.5. Let Γ be a cubical set. A type Γ ` A is a uniform Kan
type, or simply Kan type, if it is equipped with the following operations. Let
α ∈ Γ(I), S an open box shape on I, and ~u an S-open box in Aα, i.e., ~u is
an 〈S〉-indexed family where the component uyb for (y, b) ∈ 〈S〉 is an element
uyb ∈ Aα(y = b), such that ~u is adjacent compatible. We require fillers

[Aα]S~u ∈ Aα

such that for (y, b) ∈ 〈S〉

([Aα]S~u)(z = b) = uyb

and additionally for each f : I → K with x, J ⊆ def(f) the uniformity condi-
tion holds, i.e.,

([Aα]S~u)f = [Aα]Sf (~uf).

We will use the analogous notation Aα↑~u,Aα↓~u,Aα+~u,Aα−~u as in Defini-
tion 3.1.2.

48 Chapter 3. Kan Cubical Sets

Remark 3.1.6. To get the definition of when a map of cubical sets σ : ∆→ Γ is
a (uniform) Kan fibration replace Aα by σ−1(α) in the above definition. Then
Γ ` A is a uniform Kan type iff the projection p : Γ.A → Γ is a uniform Kan
fibration.

As an immediate consequence of the definition we get:

Lemma 3.1.7. A X cubical set is a Kan cubical set if and only if, X consid-
ered as a type in the empty context 1 ` X is a Kan type.

Remark 3.1.8. The open box shapes with non-principal faces appear naturally
when we want that the operation u 7→ Aρ↑u extends to the identity type, say,
X ×X ` IdX for a cubical set X. Given u, v ∈ X(I, x) and ω ∈ IdX(u0, v0)
(where u0 = u(x = 0) etc.), so ω@ 0 = u0 and ω@ 1 = v0; let y be fresh.
A filler IdX(u, v)↑ω is a filler of the following open box shape (modulo the
abstraction 〈y〉−):

ω@ y

u

v

Thus it is natural to require these more general filling operations on X.

Remark 3.1.9. Similar to the lifting condition for simplicial sets w.r.t. horn
inclusions, we can formulate the uniform Kan condition of a type Γ ` A as
the lifting of maps. Let tS(K) ⊆���I(K) for S = ((x, a); J ; I) consist of those
f : I → K such that fy = b for some (y, b) ∈ 〈S〉. This defines a sub-cubical
set of ���I . Open boxes of shape S in a cubical set Γ correspond to morphisms
tS → Γ. The existence of fillers are chosen diagonal fillers for every outer
square (where the lower horizontal map corresponds to an I-cube in Γ, and
the upper horizontal map to an open box):

tS Γ.A

���I Γ

~u

p

α

For f : I → K defined on all of x, J the map (given by the Yoneda embedding)
���f : ���K →���I restricts to a map tSf → tS (since for g ∈ tSf (L), i.e., gz = b
for (z, b) ∈ 〈Sf〉, we have z = fy for some y ∈ J , and thus fg = ���fg ∈ tS(L)).
The uniformity conditions translate to the commutation of the following prism

3.1. The Uniform Kan Condition 49

where the two diagonal (slightly bent) arrows into Γ.A are the chosen fillers:

tSf Γ.A

tS

���K Γ

���I

p

���f

Remark 3.1.10. Note that for S = ((x, a); J ; I) with I = x, J,K, where x, J
and K disjoint, we have

tS ∼= t((x,a);J;J) ∗���K . (3.3)

Moreover, for f : I → I ′ defined on x, J , we can write I ′ = fx, fJ,K ′ (disjoint).
We have the induced map

t((x,a);J;J) ∗���K ∼= tS −→ tSf ∼= t((fx,a);fJ;fJ) ∗���K′

whose right component is induced by the renaming on x, J and whose left
component is induced by the morphism f − x, J : K → K ′.

Now this suggests yet another reformulation of the Kan structure on a
cubical set due to Peter Lumsdaine of which we only give a short sketch. Let
tax;J := t((x,a);J;J) ⊆���x,J and consider the cubical set tax;J (X for a cubical
set X: by the Yoneda Lemma, its K-cubes are

tax;J ∗���K → X

which in case that x, J and K are disjoint corresponds to (by (3.3))

t((x,a);J;x,J,K) → X,

i.e., the ((x, a); J ;x, J,K) open boxes in X. Consider the canonical map

rax;J : (���x,J (X)→ (tax;J (X)

induced by the inclusion tax;J ⊆���x,J .
Assume now that X has a Kan structure. We define a section sax;J of rax;J .

This amounts to give level-wise sections

(tax;J (X)(K)→ (���x,J (X)(K)

natural in K. But the left hand side corresponds to open boxes ~u of shape
((x, a); J ;x, J,K), and the right hand side corresponds to x, J,K cubes, and
thus we can use [X]S~u to define the image of ~u. Now this is natural in K

50 Chapter 3. Kan Cubical Sets

since we have the uniformity conditions for maps f : x, J,K → x, J,K ′ which
are the identity on x, J . The uniformity conditions for renaming in x, J yield
additional equations on the sections: a renaming f : x, J → fx, fJ defined on
all of x, J induces the vertical maps in

(���x,J (X) (tax;J (X)

(���fx,fJ (X) (tafx;fJ (X)

(3.4)

where the horizontal maps are given by the corresponding sections and retrac-
tions. Now the (full) uniformity conditions yield that the diagram commutes.
The converse is also true: if we have a choice of sections for all the rax;J such
that all the squares of the form (3.4) commute, then X has a Kan structure.

3.2 The Kan Cubical Set Model
In this section we show that Kan types are closed under the type formers and
gives rise to a CwF supporting Σ-, and Π-types. It is crucial to observe that
the filling operations are part of the definition when Γ ` A is a Kan type. That
means that for Kan types Γ ` A and Γ ` B we can have A = B as cubical sets
but not necessarily as Kan types, i.e., their Kan structures might not coincide.
Thus we have to check coherence conditions, i.e., we have to verify that the
CwF equations between types are preserved by the filling operations.

Theorem 3.2.1. Kan types give rise to a CwF supporting Π- and Σ-types,
where

1. contexts Γ ` are interpreted by cubical sets;

2. substitutions σ : ∆→ Γ are maps of cubical sets;

3. types Γ ` A are Kan types;

4. terms of a Kan type Γ ` A are terms of Γ ` A considered as a type in
the cubical set (i.e., presheaf) sense.

Note that by Section 1.2 and the fact that cubical sets are just presheaves on
the cubical category ���, we get that cubical sets induce a CwF. The difference
to the model we give in the theorem is in item 3, that is, types are equipped
with a Kan structure. The proof of Theorem 3.2.1 spans the rest of this section
and the definition of the respective Kan structures are given in the proofs of
the following theorems. The part of the CwF which is shared with the CwF
of cubical sets is given in the same manner. So context extension and the
definition of the required terms and context morphisms are defined to be the
same as for the cubical set model. Also, the constructions on types are the
same except that we have to care about the Kan structure as well. In other

3.2. The Kan Cubical Set Model 51

words, forgetting the Kan structure induces a morphism of CwFs preserving
Π and Σ.

Let us also mention (without proof) that the model also supports base
types like the natural numbers. Their interpretation is given via the constant
presheaf.

We will reserve “type” for a type in the cubical set sense and use “Kan
type” for a type with its Kan structure.
Theorem 3.2.2. If Γ ` A is a Kan type, ∆ `, and σ : ∆ → Γ a context
morphism, then also the type ∆ ` Aσ is a Kan type. Moreover, the Kan
structure is such that we get:

A1 = A (Aσ)τ = A(στ)

Proof. For an I-cube α of ∆ recall that we defined (Aσ)α = A(σα). We define
the filling operations of (Aσ)α to be those of A(σα), i.e., we set [(Aσ)α]S~u =
[A(σα)]S~u for an open box ~u. With this definition it is clear that A and A1
have the same Kan structure, and likewise for the other equation.

Theorem 3.2.3. If Γ ` A and Γ.A ` B are Kan types, then so is the type
Γ ` ΣAB. Moreover, (ΣAB)σ = Σ(Aσ)(B(σp, q)) as Kan types.
Proof. Let ~u be an S-open box in (ΣAB)α for α ∈ Γ(I). Then with wyb =
(uyb, vyb) where uyb ∈ Aα(y = b) and vyb ∈ B(α(y = b), uyb) for (y, b) ∈ 〈S〉,
we get that ~u is an S-open box in Aα which we can fill to u = [Aα]S~u. Now
~v is also a S-open box in B(α, u) and we set

[(ΣAB)α]S ~w = (u, [B(α, u)]S~v).

This definitions satisfies the required uniformity conditions as they are satisfied
for Γ ` A and Γ.A ` B.

Now if α = σβ for σ : ∆→ Γ, we get that u = [(Aσ)β]S~u and

[B(σβ, u)]S~v = [(B(σp, q))(β, u)]S~v,

yielding (ΣAB)σ = Σ(Aσ)(B(σp, q)) as Kan types.

For the next theorem we need some notations. Given Γ ` A, α ∈ Γ(I), u ∈
Aα, and a shape S = ((x, a); J ; I), we define an S-open box uS by “carving”
out an S-shape from u, i.e., uS is given by the components uSyc = u(y = c) ∈
Aα(y = c). Note that the filling operation [Aα]S is a section of this operation
(−)S . Moreover, for f : I → J defined on J, x we have (uS)f = uSf .

For Γ ` ΠAB and S-shapes ~w in (ΠAB)α and ~u in Aα such that uS = ~u
for some u ∈ Aα, we define the S-shape ~w~u in B(α, u) by the components
(~w~u)yc = (wyc)1uyc ∈ B(α(y = c), u(y = c)). (Recall from Section 1.2.1
that elements in Π-types are families of dependent functions.) For f : I → J
defined on J, x this satisfies (~w~u)f = (~wf)(~vf) since:

(~w~u)yc(f − y) = ((wyc)1uyc)(f − y)
= (wyc)(f−y)(uyc(f − y))
= (wyc(f − y))1(uyc(f − y))

52 Chapter 3. Kan Cubical Sets

Theorem 3.2.4. If Γ ` A and Γ.A ` B are Kan types, then so is Γ ` ΠAB.
Moreover, (ΠAB)σ = Π(Aσ)(B(σp, q)) as Kan types.

Proof. Let C = ΠAB and let S be an open box shape. We assume that S is a
+-shape, i.e., of the form S = ((x, 1); J ; I); the case of −-shapes is symmetric.

First, we will define the composition operations Cα+
S ~w ∈ (ΠAB)α(x = 1)

for α ∈ Γ(I) and ~w an S-open box in (ΠAB)α. This amounts to define a
family of dependent functions (Cα+

S ~w)f in
∏
u∈Aα(x=1)f B(α(x = 1)f, u) for

all f : I − x→ K, such that(
(Cα+

S ~w)f (u)
)
g = (Cα+

S ~w)fg(ug). (3.5)

We will first define (Cα+
Sw)f for f = 1 : I − x → I − x. For this let u ∈

Aα(x = 1). We use the Kan fillings with shape Sx = ((x, 0); ∅; I) to extend u
to Aα↓xu ∈ Aα (with ↓x for ↓Sx

), of which we carve out an S-shape we then
apply to ~w, and map the result up:

(Cα+
S ~w)1(u) = B(α,Aα↓xu)+

S (~w (Aα↓xu)S) (3.6)

which is in B(α(x = 1), u) as (Aα↓xu)(x = 1) = u. This defines (Cα+
S ~w)1 for

arbitrary α and w. Note that to give the open box (Aα↓xu)S we only need
composition operations of Γ ` A (not so in the argument to B).

Let us illustrate this (where we assume one non-principal direction y). We
are given ~w

~w x

y

and we are given u which we fill to ū = Aα↓xu

uū
in Aα

of which we carve out the open box ūS and apply ~w, which we then fill in
B(α, ū)

~wūS (3.7)

where the last dashed line on the right is the definition of (Cα+
S ~w)1.

For general f : I − x → K we define (Cα+
S ~w)f as follows. In case there

is (y, c) ∈ 〈S〉 such that fy = c we write f as f = (y = c)(f − y) with
(f − y) : I − x, y → K. (Note that y 6= x.) We define

(Cα+
S ~w)f = (wyc)(x=1)(f−y). (3.8)

This is well defined since ~w is adjacent compatible. Note that this ensures

(Cα+
S ~w)(y = c) = wyc(x = 1).

3.2. The Kan Cubical Set Model 53

Otherwise, i.e., f is defined on J we let z be fresh w.r.t. K (e.g., take z = xK)
and set

(Cα+
S ~w)f =

(
(Cαfzx)+

Sfz
x
(~wfzx)

)
1 (3.9)

where fzx is (f, x = z) : I → K, z. By the uniformity conditions, this definition
does not depend on the choice of z, and we also get by uniformity, (3.6), and
the discussion above(

(Cα+
S ~w)1(u)

)
f =

(
(Cαfzx)+

Sfz
x
(~wfzx)

)
1(uf). (3.10)

Note, that (3.9) says that the family (Cα+
S ~w)f is determined by the value

at f = 1 (with different α, S and ~w). The uniformity condition follows from
(3.9) (note that the left hand side is ((Cα+

S ~w)f)1 by definition). Equation (3.5)
follows from (3.10) together with (3.8) and (3.9); more formally, to prove (3.5)
one distinguishes cases on the definedness of f . If f is not defined on one of the
non-principal sides, (3.5) follows from (3.8). Otherwise, the left hand side in
(3.5) is given by (3.9), in which case one distinguishes cases on the definedness
of g: in case g is not defined on one of the corresponding non-principal sides
one uses (3.8) again, and otherwise, uses (3.10). Thus we obtain an element
in Cα(x = 1).

Next we define Cα↑S ~w ∈ Cα; we do so again by first defining (Cα↑S ~w)f
for f = 1 : I → I. Let v ∈ Aα, u = v(x = 1), and let z be fresh (e.g., z = xI).
Consider the shape Sx,z = ((x, 0); z; I); we get an Sx,z open box usz, Aα↓xu,
v in Aαsz (where usz is the principal side and the next two sides are at (z, 0)
and (z, 1) respectively), illustrated as (again only with one non-principal side
y, ū = Aα↓xu, and all sides should be considered “solid”)

uū

v

usz

x

z y

which we fill to
θ = Aαsz↓x,z(usz, Aα↓xu, v) ∈ Aαsz

where we wrote ↓x,z for ↓Sx,z
. From this we carve out an Ssz = ((x, 1); J ; I, z)

open box and apply it to ~wsz to get an Ssz open box

(~wsz) θSsz in B(αsz, θ), (3.11)

or as picture (where we write wx0θx0 for (wx0)sz
(θ(x = 0)) etc.)

wx0θx0

wy0θy0

wy1θy1

54 Chapter 3. Kan Cubical Sets

Notice that if we take the face (z = 0) in the above picture, we get the same
open box ~wūS as in (3.7).

We define the open box χ in B(αsz, θ) of shape ((z, 1);x, J ; I, z) with the
principal side

B(α,Aα↓Su)↑S(~w (Aα↓xu)S)

(which is the square in (3.7)) and where the non-principal side at (x, 1) is(
(Cα+

S ~w)1(u)
)
sz; these are compatible by construction (3.6); the non-principal

side at (x, 0) is given by the principal side of the open box (3.11); the non-
principal sides in directions J are the non-principal sides of (3.11).

We fill this to obtain the definition

(Cα↑~w)1(v) = B(αsz, θ)+
χ (3.12)

yielding an element in B(α, v) since θ(z = 1) = v by definition of θ. This
concludes the definition of ((Cα)↑~w)1 for all α and ~w.

For general f : I → K we define (Cα↑~w)f by distinguishing cases:

(Cα↑S ~w)f =

(Cα+

S ~w)(f−x) if fx = 1,
(wyc)(f−y) if fy = c for some (y, c) ∈ 〈S〉,
(Cαf↑Sfx ~wf)1 otherwise, i.e., f is defined on x, J.

where (f − x) : I − x→ K and (f − y) : I − y → K.
To conclude that this definition is a well-defined element of Cα and satisfies

the uniformity condition we need to verify that(
(Cα↑~w)1(v)

)
f = (Cα↑~w)f (vf) (3.13)

for f : I → K. If for some y ∈ x, J , fy is not defined, (3.13) follows from
how the open box χ is defined. Otherwise, i.e., f is defined on all x, J , (3.13)
follows by inspecting that, in the definition of (Cα↑~w)1(v),

(B(αsz, θ)+
χ)f = B(αfsz′ , θf ′)

+(χf ′)

where f ′ = (f, z = z′) and z′ fresh w.r.t. K. And θf ′ and χf ′ are, by unifor-
mity, exactly those arguments appearing in the definition of (Cαf↑~wf)1(vf)
which is the right hand side of (3.13).

To verify that the Kan structure of Π(Aσ)(B(σp, q)) (as defined above)
is equal to the Kan structure for (ΠAB)σ (as defined in the proof of Theo-
rem 3.2.2), assume that above α = σβ for σ : ∆→ Γ; then Cα = ((ΠAB)σ)β
and in equation (3.6) we have

B(σβ,A(σβ)↓xu)+(~w(A(σβ)↓xu)S)
= (B(σp, q))(β, (Aσ)β↓xu)+(~w((Aσ)β↓xu)S)

and the right hand side is the definition of
(
Π(Aσ)(B(σp, q))+

~w
)

1(u). Simi-
larly for the other parts of the definition.

3.3. Identity Types 55

Remark 3.2.5. We also get a CwF if in Theorem 3.2.1, we require contexts to
be Kan cubical sets instead of just cubical sets. The crucial point that this
works is that if Γ ` is a Kan cubical set and Γ ` A is a Kan type, then Γ.A ` is
a Kan cubical set. The proof of this statement is along the lines of the closure
of Kan types under Σ-types (see Theorem 3.2.3); in fact, it can be derived
using that 1 ` Γ is a Kan type.

3.3 Identity Types
We will now define the (weak) identity type of a cubical set and justify an
elimination operator and functional extensionality for it. The underlying idea
of the definition of identity type is that a proof of equality IdA(a, b) should be
a path with endpoints a and b.

Recall the definition of the non-dependent path space (Definition 2.2.7),
non-dependent identity types (Definition 2.2.8), and the notation used there.
Definition 3.3.1. Let Γ ` A, Γ ` a : A, Γ ` b : A. The (weak) identity type
Γ ` IdA(a, b) is defined as follows: for ρ ∈ Γ(I) an element ω ∈ (IdA(a, b))ρ
is an element ω ∈ A(ρsxI

) such that ω(xI = 0) = aρ and ω(xI = 1) = bρ.
The restriction by a f : I → J of ω ∈ (IdA(a, b))ρ is defined, as for the non-
dependent identity type, by ωf = ω(f, xI = xJ) (where on right we use the
restriction of A).

As in 2.2.8 we could have used equivalence classes 〈x〉p with p ∈ A(ρsx)
where ρ ∈ Γ(I), x fresh for I, and 〈x〉p = 〈y〉q if p(x = y) = q. The operation
ω@ a for a ∈ 2 or a fresh is defined as there, i.e., ω@ a = ω(xI = a). For p ∈
Aρsx we set 〈x〉p = p(xI = x). Note that for f : I → J and ω ∈ (IdA(a, b))ρ,
x /∈ I we have (ω@x)(f, x = a) = ωf @ a. No matter which definition is used
we have the notions of 〈x〉p and ω@ a as in 2.2.8.
Theorem 3.3.2. Kan types are closed under identity types, i.e., if Γ ` A is
a Kan type, Γ ` a : A, and Γ ` b : A, then Γ ` IdA(a, b) is a Kan type.
Moreover, for σ : ∆→ Γ, (IdA(a, b))σ = IdAσ(aσ, bσ) as Kan types.
Proof. Let ~ω be an S-open box in (IdA(a, b))ρ with ρ ∈ Γ(I) and let z be
fresh; then ~ω@ z (component-wise) is an S-open box in Aρsz. We extend this
to an S, z-open box in Aρsz, where S, z is like S but with the non-principal
side z added, given by ~ω@ z, aρ, bρ and define

[IdA(a, b)ρ]S~ω = 〈z〉 [Aρsz]S,z(~ω@ z, aρ, bρ) (3.14)

Note that by the definition of the extended open box

([IdA(a, b)ρ]S~ω) @ 0 = aρ and ([IdA(a, b)ρ]S~ω) @ 1 = bρ.

The uniformity conditions follow from those in A.
For a substitution σ : ∆→ Γ an element ω of (IdA(a, b)σ)ρ = IdA(a, b)(σρ)

is given by ω@ z in A((σρ)sz) = (Aσ)(ρsz) with ω@ 0 = a(σρ) = (aσ)ρ
and ω@ 1 = b(σρ) = (bσ)ρ. Hence IdA(a, b)σ = IdAσ(aσ, bσ) as types, and
similarly this holds for the Kan structure.

56 Chapter 3. Kan Cubical Sets

Note that for the filling operations in IdA(a, b) we need the filling opera-
tions in A with one more non-principal direction. This is the main reason to
require operations with non-principal sides!

Lemma 3.3.3. For Γ ` A and Γ ` a : A we have Γ ` refl a : IdA(a, a), and
(refl(a))σ = refl(aσ) for a substitution σ : ∆→ Γ.

Proof. For ρ ∈ Γ(I) define (refl a)ρ = a(ρsxI
), i.e., (refl a)ρ = 〈x〉a(ρsx).

This defines a term as (a(ρsxI
))f = a(ρsxI

(f, xI = xJ)) = a((ρf)sxJ
) =

(refl a)(ρf) for f : I → J .

Note that the previous lemma does not rely on Γ ` A to be a Kan type.
Next, we will define an elimination operator for the identity type. We

will define various operations which together define the J-eliminator where the
usual definitional equality holds only up to propositional equality (i.e., we will
give an inhabitant of the respective Id-type).

First we define the transport along a path. Let Γ ` A be a type and
Γ.A ` C be a Kan type. Furthermore let Γ ` a : A, Γ ` b : A, Γ ` e : C[a],
and Γ ` d : IdA(a, b). (Recall that [a] is the substitution (1, a) : Γ → Γ.A.)
We define a term Γ ` substC(d, e) : C[b] as follows. For ρ ∈ Γ(I) and a
fresh x = xI we have that dρ@x ∈ Aρsx with (dρ@x)(x = 0) = aρ and
(dρ@x)(x = 1) = bρ. Thus (ρsx, dρ@x) connects [a]ρ to [b]ρ along x. We
define

substC(d, e)ρ = C(ρsx, dρ@x)+
x (eρ) ∈ C[b]ρ (3.15)

where the composition operation is w.r.t. the shape ((x, 1); ∅; I). This defines
a term, since by the uniformity conditions we get for f : I → J and y = xJ
J-fresh:

(substC(d, e)ρ)f =
(
C(ρsx, dρ@x)+

x (eρ)
)
f

=
(
C(ρsx, dρ@x)(f, x = y)

)+
y

(eρf)

= C(ρfsy, dρf @ y)+
y (eρf)

= subst(d, e)(ρf)

where we used that sx(f, x = y) = fsy.
If σ : ∆→ Γ, then (substC(d, e))σ = substC(σp,q)(dσ, eσ) which is readily

checked from the defining equation (3.15).
According to the definition of subst the line C(ρsx, dρ@x)↑x(eρ) connects

eρ to substC(d, e)ρ. In particular, for d = refl a we get

Γ ` substEqC(a, e) : IdC[a](e, substC(refl a, e))

where
substEqC(a, e)ρ = 〈x〉C(ρsx, aρsx)↑x(eρ). (3.16)

Similar to above one can show that this defines a term and is stable under
substitution.

3.3. Identity Types 57

Definition 3.3.4. For a type Γ ` A we define the type Γ ` contr(A) by

contr(A) = ΣA (ΠAp(IdApp(qp, q)))

or using “informal” type-theoretical notation

contr(A) = (Σx : A) (Πy : A) IdA(x, y).

We say that a type Γ ` A is contractible if the type Γ ` contr(A) is inhabited.
In this case we call the first projection a center of contraction.

Next, we show that if Γ ` A is a Kan type and Γ ` a : A, then the
singleton type singl(A, a) = ΣA IdAp(ap, q) is contractible. We clearly have
Γ ` (a, refl a) : singl(A, a). We now show that (a, refl a) is also a center of
contraction, i.e., we have to give a term

Γ. singl(A, a) ` isCenter(a) : Id((a, refl a)p, q).

where we omitted the subscript singl(A, a)p. Let ρ ∈ Γ(I) and (b, ω) ∈
singl(A, a)ρ, so b ∈ Aρ and ω ∈ (IdAp(ap, q))(ρ, b). For a fresh x = xI ,
ω@x ∈ Aρsx connects aρ to b. Let y be a fresh name (y = xI,x). We have to
give an element in Id((a, refl a)p, q)(ρ, (b, ω)) for which we give an element
in singl(A, a)ρsy connecting (a, refl a)ρ to (b, ω). This amounts to give a
pair whose first component α is in Aρsy and connects a to b and whose second
component in (IdAp(ap, q))(ρsy, α) connects (refl a)ρ to ω along y. Consider
the open box (aρsy, aρsx, ω@x) in A(ρsxsy):

aρ b

aρ aρ

aρsx

aρsy

ω@ x (3.17)

Its filler gives rise to the second component and its composition, i.e., its upper
face gives the first component. Thus we define

isCenter(a)(ρ, (b, ω)) = 〈y〉
(
A(ρsxsy)+

x,y(aρsy, aρsx, ω@x),
〈x〉A(ρsxsy)↑x,y(aρsy, aρsx, ω@x)

) (3.18)

The uniformity conditions guarantee that this defines a section.
Let us define the more common elimination operator of Paulin-Mohring

from the above operations—with the difference that the usual definitional
equality is only propositional. To not make the notation too heavy we’ll use
informal reasoning in type theory; note that the definition can be given inter-
nally in type theory and we don’t refer to the model; this definition follows
Danielsson’s Agda development1 accompanying [29]. First note that using the
transport operation subst one can define composition p � q : IdA(a, c) of two
identity proofs p : IdA(a, b), q : IdA(b, c), as well as inverses p−1 : IdA(b, a).

1Available at www.cse.chalmers.se/~nad/.

www.cse.chalmers.se/~nad/

58 Chapter 3. Kan Cubical Sets

Let A be a type, a : A, and C(b, p) a type given b : A, p : IdA(a, b), such
that v : C(a, refl a); for b : A and p : IdA(a, b) we define J(a, v, b, p) : C(b, u).
We can consider C as a dependent type over singl(A, a) via C(pw, qw) for
w : singl(A, a). As we showed in the last paragraph, singl(A, a) is con-
tractible with center (a, refl a), and thus we get a witness app(ϕ, (b, p)) :
Id((a, refl a), (b, p)) for ϕ = λ isCenter(a); now with subst (w.r.t. the type
C(pw, qw) for w : singl(A, a)) we can define

J(a, v, b, p) = subst((app(ϕ, (a, refl a)))−1 � app(ϕ, (b, p)), v). (3.19)

Note that we now are able to derive IdIdA(a,a)(p−1�p, refl a) for all p : IdA(a, b)
using J and substEq.

It remains to check the propositional equality for J. If, in (3.19), p = refl a
and b = a, we get that

app(ϕ, (a, refl a))−1 � app(ϕ, (b, p))

is propositionally equal to refl(refl a), and thus using subst and substEq
again one gets a witness of IdC(a,refl a)(v, J(a, v, a, refl a)). This concludes
the sketch that J with the rewrite rule as propositional equality is definable
from subst, substEq, and isCenter—and that alone in type theory without
referring to their actual semantics.

Note that to get the propositional equality for J we could not use subst
on app(ϕ, (b, p)) directly.

3.3.1 Functional Extensionality
The equality on the function space is extensional.

Theorem 3.3.5. Equality on Π-types is extensional, i.e., any pointwise equal
functions are equal. More precisely, given Γ ` A, Γ.A ` B we can justify the
rule:

Γ ` w : ΠAB
Γ ` w′ : ΠAB Γ ` e : ΠA IdB[q](app(wp, q), app(w′p, q))

Γ ` funExt(w,w′, e) : Id(w,w′)

Proof. Let ρ ∈ Γ(I), x = xI fresh, and write θ for funExt(w,w′, e). We have
to define a dependent function

(θρ)f in
∏

u∈A(ρsxf)

B(ρsxf, u) for each f : I, x→ J.

In case fx = 0 we set (θρ)f = wρ(f−x), and likewise, in case fx = 1 we
set (θρ)f = w′ρ(f−x). For f defined on x we set (θρ)f = (θ(ρf))1 so that
we can assume f = 1 : I, x → I, x. This definition ensures (θρ)g = θ(ρg).
Let u ∈ Aρsx and ub = u(x = b) ∈ Aρ; we have to define (θρ)1u ∈ B(ρsx, u)

3.3. Identity Types 59

connecting wρ1u0 to w′ρ1u1 along x. Let y be fresh. We get that (eρ1u1) @ y ∈
B(ρsy, u1) and hence we define (θρ)1u to be the filler of the following box

wρ1u0 w′ρ1u1

wρ1u0 wρ1u1

(θρ)1u

(wρ1u0)sy

wρsxu

(eρ1u1) @ y over B(ρsxsy, usy).

That is, (θρ)1u = B(ρsxsy, usy)+
y,x(wρsx

u, (wρ1u0)sy, (eρ1u1) @ y). Now if
f : I, x→ J is defined on x and z J-fresh, we get by the uniformity conditions

((θρ)1u)f =
(
B(ρsxsy, usy)+

y,x(wρsx
u, (wρ1u0)sy, (eρ1u1) @ y)

)
f

=
(
B(ρsxsy, usy)(f, y = z)

)+
z,fx(

(wρsx
u)f, (wρ1u0)(f − x)sz, (eρ1u1)(f − x) @ z

)
which is the same as (θρ)f (uf). In case f is not defined on x we get ((θρ)1u)f =
(θρ)f (uf) by the above definition. We leave the verification of (θρ)f = θ(ρf)
from these equations to the reader.

3.3.2 Path Application
Although in general subst and J don’t satisfy the usual definitional equali-
ties the model justifies another operation ap which satisfies new definitional
equalities which don’t hold if we define the operation using J.

Theorem 3.3.6. Let Γ ` A and Γ ` B be Kan types, Γ ` u : A, and Γ ` v : A.
Then we can validate the rule

Γ ` ϕ : A→ B Γ ` w : IdA(u, v)
Γ ` ap(ϕ,w) : IdB(app(ϕ, u), app(ϕ, v))

satisfying

ap(id, w) = w

ap(ϕ ◦ ψ,w) = ap
(
ϕ, ap(ψ,w)

)
ap(ϕ, refl a) = refl(app(ϕ, a))
ap(λ(bp), w) = refl b

where id is the identity function, ◦ denotes composition, and λ(bp) is the con-
stant b function. Moreover this operation is stable under substitution, i.e.,
ap(ϕ,w)σ = ap(ϕσ,wσ) for σ : ∆→ Γ.

Proof. For ρ ∈ Γ(I) and a fresh x we set

ap(ϕ,w)ρ = 〈x〉 (ϕρ)sx(wρ@x).

60 Chapter 3. Kan Cubical Sets

This defines a term as for f : I → J and y J-fresh we get

(ap(ϕ,w)ρ)f = 〈y〉 ((ϕρ)sx
(wρ@x))(f, x = y)

= 〈y〉 (ϕρ)sx(f,x=y)(wρ@x(f, x = y))
= 〈y〉 (ϕρ)fsy

(w(ρf) @ y)
= 〈y〉 (ϕ(ρf))sy

(w(ρf) @ y) = ap(ϕ,w)(ρf)

The other equations immediately follow from the definition. Let us, for exam-
ple, check the second equation: ϕ ◦ ψ is λ app(ϕp, app(ψp, q)) and hence

ap(ϕ ◦ ψ,w)ρ @x = ((ϕ ◦ ψ)ρ)sx
(wρ@x)

= app(ϕp, app(ψp, q))(ρsx, wρ@x)

which using ((ϕp)(ρsx, wρ@x))1 = (ϕρ)sx
(and analogously for ψ) becomes

= (ϕρ)sx((ψρ)sx(wρ@x))
= (ϕρ)sx(ap(ψ,w)ρ @x)
= (ap(ϕ, ap(ψ,w)))ρ @x.

3.3.3 Heterogeneous Identity Types
The model also comes with a natural notion of (weak) heterogeneous identity
types satisfying the following rules

Γ ` A Γ ` u0 : A Γ ` u1 : A Γ ` p : IdA(u0, u1)
Γ.A ` C Γ ` v0 : C[u0] Γ ` v1 : C[u1]

Γ ` HIdpC(v0, v1)

HIdreflu
C (v0, v1) = IdC[u](v0, v1)

omitting the equations for stability under substitution. Its interpretation in
the cubical set model is given by: for ρ ∈ Γ(I) the set (HIdpC(v0, v1))ρ contains
elements 〈x〉w with w ∈ C(ρsx, pρ@x) (up to renaming of bound variables,
or making a canonical choice x = xI as for the identity type) such that w(x =
b) = vb for b ∈ 2. The Kan structure is given by the equation:

[(HIdpC(v0, v1))ρ]S~ω = 〈z〉 [C(ρsz, pρ@ z)]S,z(~ω, v0ρ, v1ρ).

The accompanying equation is immediate given the definition of Id.

3.4 Regular Kan Types
We have seen that in general the usual definitional equality for J holds only up
to propositional equality. If we restrict to Kan types which satisfy a regularity
condition we can give a definition of J for which the equality is definitional.
This notion is however not preserved by all the type formers.

3.4. Regular Kan Types 61

Definition 3.4.1. A Kan type Γ ` A is regular if for any open box shape S
with principal direction x and S-open box ~u in ρsx such that each component
uyb with y 6= x is degenerated along x, i.e., uyb = vybsx for some vyb ∈ Aρ(y =
b), then the filling satisfies

[Aρsx]S~u = uxasx

where uxa is the principal face of ~u. (So ~u = uxa, ~vsx.)

Theorem 3.4.2. Regularity is preserved under substitution and the type for-
mers Id and Σ, that is:

1. If Γ ` A is a regular Kan type, then so is ∆ ` Aσ for σ : ∆→ Γ.

2. If Γ ` A be a regular Kan type, Γ ` a : A, and Γ ` b : A, then also
Γ ` IdA(a, b) is regular.

3. If Γ ` A and Γ.A ` B are regular Kan types, then so is Γ ` ΣAB.

Proof. The proof is by analyzing the definitions of the fillings. For (1) re-
call that the fillings in (Aσ)ρsx are defined by fillings in A(σ(ρsx)). Since σ
commutes with degenerates, regularity is preserved to Aσ.

For (2) the defining equation (3.14) yields for an S-open box ω, ~ω in
IdA(a, b)ρsx degenerate along x (where x is the principal direction of S and ω
the principal side of the box)

[IdA(a, b)ρsx]S(ω, ~ω) = 〈z〉 [Aρsxsz]S,z(ω@ z, ~ω@ z, aρsx, bρsx)
= 〈z〉 (ω@ z)sx = ωsx

as sxsz = szsx and (ω@ z, ~ω@ z, aρsx, bρsx) is also degenerate along x.
For (3) one readily checks from the defining equations in Theorem 3.2.3.

Let us sketch how one can use regularity in order to define a variant of J
given in Section 3.3 but with the right definitional equality for regular Kan
types (using the notations from Section 3.3): First, the definition of subst
and isCenter is as in Section 3.3. Note that by the regularity condition (for
C) substEqC(a, e) is simply refl(e) in equation (3.16) on page 56. Moreover,
the definition of isCenter(a) on page 57 is such that if b = aρ and ω = aρsx
the square (3.17) is degenerate. Second, this can be used to directly define a
variant J′ of J by

J′(a, v, b, p) = subst(app(ϕ, (b, p)), v).

where ϕ was λ isCenter(a). This now satisfies the right definitional equality
since if p = refl(a) and b = a, then app(ϕ, (a, refl(a))) = refl(a, refl(a)),
and so using subst along a reflexivity path yields v.

62 Chapter 3. Kan Cubical Sets

3.5 Kan Completion
In this section we will show how to complete any cubical set Γ to a Kan cubical
set Γ̂. This works by freely attaching fillers to Γ; their restrictions are guided
by the uniformity conditions. This construction however does not work for
dependent types in a satisfactory way since it does not necessarily commute
with substitutions.2

Theorem 3.5.1. For any cubical set Γ there is a Kan cubical set Γ̂ and a
monomorphism inc : Γ→ Γ̂ such that for any Kan cubical set ∆ and σ : Γ→ ∆
there is a morphism σ̂ : Γ̂→ ∆ making the following diagram commute:

Γ Γ̂

∆

inc

σ σ̂

Proof. Given a cubical set Γ ` we define the sets Γ̂(I) for I in��� and restriction
maps Γ̂(I) 3 ρ 7→ ρf ∈ Γ̂(J) for f : I → J by induction-recursion as follows.
The sets are given by the rules:

1. If ρ ∈ Γ(I), then inc ρ ∈ Γ̂(I).

2. If S is an open box shape with principal side (x, a) and ~u is an S-open
box in Γ̂(I), then fillS ~u ∈ ρ̂.

3. If S is an open box shape with principal side (x, a) and ~u is an S-open
box in Γ̂(I) and x = xI−x, then compS ~u ∈ Γ̂(I − x).

Here inc, fillS , and compS are constructors, with the intended rôle for the latter
two being the filling and composition operation, respectively. Note that in (2)
and (3) being an open box refers to the restrictions defined at the same time.
Note that the assumption on the variable x in (3) is due to the fact that x
is bound. (One could also identify these expressions up to renaming of the
bound variables, similar as for the path types.) The restrictions are guided by
the uniformity conditions. For f : I → J we define

(inc a)f = inc(af)

(fillS ~u)f =

uyc(f − y) if for some (y, c) ∈ 〈S〉, fy = c,

compSf ′(~uf ′) if fx = a,

fillSf (~uf) otherwise.

2Indeed, type theory can’t be consistently extended with such a rule, cf. http://ncatlab.
org/homotopytypetheory/show/Homotopy+Type+System#fibrant_replacement (October 13,
2014).

http://ncatlab.org/homotopytypetheory/show/Homotopy+Type+System#fibrant_replacement
http://ncatlab.org/homotopytypetheory/show/Homotopy+Type+System#fibrant_replacement

3.5. Kan Completion 63

where f ′ = (f −x, x = xJ) and the restriction of a composition compS ~u along
f : I − x→ J is defined by

(compS ~u)f =
{
uyc(x = a)(f − y) if for some (y, c) ∈ 〈S〉, fy = c,

compSf̃ (~uf̃) otherwise.

where now f̃ = (f, x = xJ) : I → J, xJ .
Now one proves by induction on a ∈ Γ̂(I) that (ρf)g = ρ(fg) and ρ1 = ρ

to make Γ̂ into a cubical set. The Kan fillers are given by the constructor fillS
making Γ̂ into a Kan cubical set. We directly get the monomorphism Γ → Γ̂
from the constructor inc.

Given a Kan cubical set ∆ and σ : Γ→ ∆ we define maps Γ̂(I)→ ∆(I), ρ 7→
σ̂ρ while simultaneously proving (σ̂ρ)f = σ̂(ρf) for f : I → J :

σ̂(inc ρ) = σρ

σ̂(fillS ~u) = [∆]S(σ̂~u)
σ̂(compS ~u) = |∆|S(σ̂~u)

where (x, a) is the principle side of S (with x = xI−x in the last case), and σ̂~u is
the family of elements σ̂(uyb) for (y, b) ∈ 〈S〉; by the induction hypothesis, this
is an open box in ∆(I). That ϕ̂ commutes with restrictions is by construction,
as is the commuting diagram.

64 Chapter 3. Kan Cubical Sets

Chapter 4

The Universe of Kan
Cubical Sets

In this chapter we will define the universe of small Kan types and show that
it is itself a uniform Kan cubical set. The main work goes into the latter and
we will decompose this into first defining the composition- and then the filling
operations (similarly to what we did for Π-types).

Recall from Section 1.2.4 how to lift a Grothendieck universe Set0 to a
universe in the presheaf model. This is adapted to give a universe of small
Kan types by basically replacing “type” with “Kan type” in the definition:
First, we adapt the definition of small type. The judgment Γ ` A KType0 is
defined to be that Γ ` A is a Kan type and Aρ is a small set (i.e., an element
of Set0) for each ρ ∈ Γ(I); we also call such a Γ ` A a small Kan type. Second,
we define the universe accordingly:

Definition. The cubical set U of small Kan types is defined as follows. The
set U(I) consists of all small Kan types yI ` A KType0; restrictions along
f : I → J are defined by substituting with yf : yJ → yI.

The definitions of p·q and El are as in Section 1.2.4, where the fillings
are defined by [(ElT)ρ]S~u = [(Tρ)1]S~u and [(pAqρ)f]S~u = [A(ρf)]S~u. This
defines a universe structure on the Kan cubical set model if we prove that
Γ ` U is itself a Kan type, i.e., that U is a Kan cubical set.

Note that the points of U are simply the (small) Kan cubical sets: for
y∅ ` A we get a Kan cubical set with A(I) being Af where f is the unique
∅ → I. A line in U between points A and B can be seen as a “heterogeneous”
notion of lines, cubes, . . . , a→ b where a is an I-cube of A and b and I-cube
of B.

The goal of the rest of this chapter is to prove that the cubical set U of
small Kan types is a Kan cubical set. We first show that U has compositions.
The intuitive idea behind the composition is that of composing relations (hence

66 Chapter 4. The Universe of Kan Cubical Sets

the name). If we are given a open box in the universe, say of the form

C D

A B

γ

β

α

δ y
x

we want to define the line δ in the universe. δ will be given by a family δf for
f : {y} → I where the main case is δ1 which will be defined to consist of triples
(u, v, w) where u ∈ α1, v ∈ β1, and w ∈ γ1 such that they are compatible in
the sense that u(x = 0) = v(y = 0) and w(x = 0) = v(y = 1), i.e., a open box
shape:

· ·

· ·

w

v

u

We then have to verify that δ has filling operations.

Lemma. U has composition operations.

Proof. Let S = ((x, d); J ; I) be an open box shape in I and ~A an S-open box
in U(I), that is, compatible Aya ∈ U(I − y) for (y, a) ∈ 〈S〉. We first define
the composition Axd = |U|S ~A as a type y(I − x) ` Axd and then explain its
Kan structure. Let d̄ = 1− d.

Before we define Axd let us introduce some notation. An S-open box ~u
in ~A is given by a family uyb ∈ (Ayb)1 for (y, b) ∈ 〈S〉 such that they are
compatible, i.e., uyb(z = c) = uzc(y = b) ∈ (Ayb)(z=c) = (Azc)(y=b) for y 6= z,
(y, b), (z, c) ∈ 〈S〉. We denote the set of all such S-open boxes by 〈S〉 ~A. Note
that if f : I → K is defined on x, J , then ~u ∈ 〈S〉 ~A implies ~uf ∈ 〈Sf〉 ~Af .

For f : I − x → K we define the (small) set (Axd)f by distinguishing
cases. In case f(y) = b for some (y, b) ∈ 〈S〉 (note that y 6= x), then f =
(y = b)(f − y) and define (Axd)f = (Ayb)(f−y,x=d). Note that this is well
defined as ~A is compatible. Otherwise, i.e., in case f is defined on J , we define
(Axd)f = 〈Sf ′〉Af ′ where f ′ = (f, x = xK) : I → K,xK . This guarantees
that Axd has the right faces. One can also define it to be elements 〈z〉~u with
~u ∈ 〈S(f, x = z)〉 ~A(f, x = z) and identify modulo α-conversion; we will use
this notation.

To summarize, (Axd)f consists of elements of the form

1. u ∈ (Ayb)(f−y,x=d) if f(y) = b for some (y, b) ∈ 〈S〉;

2. 〈z〉~u, where ~u ∈ 〈S(f, x = z)〉 ~A(f, x = z) and z is fresh, otherwise.

Now if g : K → L we define the restrictions of an element in (Axd)f as follows.
For elements u of the form (1), we use the restriction ug of (Ayb)(f−y,x=d).

67

The restriction of an element 〈z〉~u of the form (2) is defined by

(〈z〉~u)g =
{
u(fy)b(g − fy, z = d) if g(f(y)) = b for some (y, b) ∈ 〈S〉,
〈z′〉~u(g, z = z′) otherwise,

where z′ is fresh w.r.t. the codomain of g. Note that in each case the resulting
element is in (Axd)fg. In particular, for (y, b) ∈ 〈S〉 and f = 1 we have

(〈z〉~u)(y = b) = uyb(z = d).

This defines Axd = |U|S ~A as a cubical set satisfying (as cubical sets)

(|U|S ~A)(y = b) = Ayb for (y, b) ∈ 〈S〉, (4.1)

(|U|S ~A)f = |U|Sf ′ ~Af ′ if f is defined on J, (4.2)

with f ′ = (f, x = z) and in particular as sets we have

(|U|S ~A)f =
{

(Ayb)(f−y,x=d) if f(y) = b for some (y, b) ∈ 〈S〉,
(|U|Sf ′ ~Af ′)1 if f is defined on J.

(4.3)

We now have to define the filling operations for (Axd)f = (|U|S ~A)f .
W.l.o.g. we assume that f = 1 : I − x → I − x as we take (4.3) as defin-
ing equations for the filling operations as well otherwise. Let ~w be an open
box of shape S′ = ((x′, d′); J ′; I − x) in (Axd)1, i.e., wyb ∈ (Axd)(y=b) for
(y, b) ∈ 〈S′〉 such that for (y, b), (z, c) ∈ 〈S′〉, y 6= z

wyb(z = c) = wzc(y = b). (4.4)

Note that for (y, b) ∈ 〈S′〉 − 〈S〉 (i.e., (y, b) ∈ 〈S′〉 and y /∈ J) we have
that wyb = 〈x〉~uyb with ~uyb ∈ 〈S(y = b)〉 ~A(y = b). (We assume that all
bound variables are x which is fresh for I − x.) Since y /∈ x, J we have
〈S(y = b)〉 = 〈S〉, so uybzc ∈ (Azc)(y=b) for (z, c) ∈ 〈S〉 such that

uybzc(z′ = c′) = uybz′c′(z = c) (4.5)

whenever these elements are defined. Moreover, by the definition of the re-
striction

wyb(z = c) = uybzc(x = d) (4.6)

and so, since ~w is adjacent compatible (4.4), we get for (y, b) ∈ 〈S′〉 − 〈S〉 and
(z, c) ∈ 〈S〉,

wzc(y = b) = uybzc(x = d). (4.7)

Moreover, if (y, b), (y′, b′) ∈ 〈S′〉 − 〈S〉 with y 6= y′, we have since wyb(y′ =
b′) = wy′b′(y = b) that the corresponding entries at (z, c) ∈ 〈S〉 of the vectors
are equal, i.e.,

uybzc(y′ = b′) = uy
′b′

zc (y = b). (4.8)

68 Chapter 4. The Universe of Kan Cubical Sets

For (z, c) ∈ 〈S〉 we denote the family (not necessarily an open box) of the uybzc,
(y, b) ∈ 〈S′〉 − 〈S〉 by aux(z, c). By (4.8) this family is compatible.

We want to define the element [(Axd)1]S′ ~w = [(|U|S ~A)1]S′ ~w ∈ (Axd)1 in
such a way that this definition satisfies the uniformity condition. I.e., for
f : I − x→ L defined on x′, J ′ ⊆ I − x, we require

([(|U|S ~A)1]S′ ~w)f = [(|U|S ~A)f]S′f (~wf)

that is, according to (4.3),(
[(|U|S ~A)1]S′ ~w

)
f ={

[(|U|Sf ′ ~Af ′)1]S′f (~wf) if J ⊆ def(f),
[(Ayb)(f−y,x=d)]S′f (~wf) if fy = b for a (y, b) ∈ 〈S〉.

(4.9)

Let us write 〈x〉~u for the element [(|U|S ~A)1]S′ ~w we are going to define. To
satisfy the second equation of (4.9) we need for y ∈ J and (y, b) /∈ 〈S〉′ that

uyb(x = d) = (〈x〉~u)(y = b) = [(Ayb)(x=d)]S′(y=b)(~w(y = b)). (4.10)

To give 〈x〉~u there are three cases to consider. We leave it for the reader
to verify (〈x〉~u)(y = b) = wyb for (y, b) ∈ 〈S〉 along with the definition of ~u.

1. W.l.o.g. J ⊆ x′, J ′. Let us first illustrate this in a (low-dimensional)
special case where I = {x, x′, y}, J = {y}, d = d′ = 1, and also J ′ = ∅. We
are given the dotted line in:

x′ y

x

Ax0

Ay0

Ay1

Ax1 = |U|(~A)

The types of the corresponding cubes are indicated in the lower square (which
is not filled). The dotted line is, as an element in the composition, given by an
open box indicated as the solid lines. To give the filling of the dotted line in
the upwards direction is to give an open box indicated with the dashed lines;
the first step is to fill each of the black dots upwards, and to proceed with the
other cases with the extended box which now contains the non-principal sides
for y ∈ J .

More formally and in the general case, for each y ∈ J with y /∈ x′, J ′ we
have that (y, b) /∈ 〈S〉′ (for b ∈ 2) and we construct

wyb ∈ (Ayb)(x=d)

69

by filling ~w(y = b) of shape S′(y = b) in (Ayb)(x=d). Note that for (y, b), (z, c)
with y, z ∈ J and y, z /∈ x′, J ′ the so constructed elements are adjacent com-
patible since:

wyb(z = c) = ([(Ayb)(x=d)]S′(y=b)(~w(y = b)))(z = c)
= [(Ayb)(x=d)(z=c)]S′(y=b)(z=c)(~w(y = b)(z = c))
= [(Azc)(x=d)(y=b)]S′(z=c)(y=b)(~w(z = c)(y = b))
= wzc(y = b)

Moreover, by construction they are adjacent compatible with the given open
box ~w. Thus, we can extend the ~w to a ((x, d); J ′, (J − (x′, J ′)); I − x) open
box.

2. Case x′ /∈ J . Let us first illustrate again in the special case as above
but now with J ′ = y. So we are given the dotted line and the the solid lines
on the right in:

1

2

2

The dotted line again corresponds to the three lower solid lines, and we want
to construct three squares indicated by the dashed lines. To do so, we first
fill on the left as indicated by the double arrow labeled “1”; second, we fill
those sides labeled with “2” by the other sides taking into account those faces
already constructed in the first step.

2.1. We construct uxd̄ ∈ (Axd̄)1 by filling aux(x, d̄) in (Axd̄)1. Note that
here aux(x, d̄) is an open box of shape ((x′, d′); J ′ − J ; I − x).

2.2. Next, for (z, c) ∈ 〈S〉 with z 6= x we construct uzc ∈ (Axd̄)1 by filling
in (Axd̄)1 the open box

aux(z, c), uxd̄(z = c), wzc of shape ((x′, d′); (J ′ − J), x; I − z).

where the latter two elements are the non-principal sides at (x, d̄) and (x, d),
respectively.

2.3. This concludes the construction of ~u in this case.
3. Case x′ ∈ J . Let us again first sketch the construction in the above

special case where x′ = y, J = J ′ = y. We are given the right hand open box
given by the two dotted lines (which become the lower and upper solid lines)
and the solid line on the right in:

70 Chapter 4. The Universe of Kan Cubical Sets

The filler of the open box is now constructed doing the fillers indicated with
the double arrows in order: starting with the front where there are three solid
lines forming an open box, and continuing the way to the back, always taking
into account the face of the previously constructed filler as principal side.

3.1. We begin by extending the input box along x in direction d̄. More
precisely, we construct uzc ∈ (Azc)1 where (z, c) ∈ 〈(x′, d′); J − x′〉 (note
J − x′ = J ∩ J ′) by filling

wzc, aux(z, c) of shape ((x, d̄); J ′ − J ; I − z).

Here wzc ∈ (Axd)zc = (Azc)(x=d) is the principal side of the open box; more-
over, note that 〈(x′, d′); J − x′〉 contains (x′, d̄′) where d̄′ = 1 − d′, but not
(x′, d′) and not (x, d̄).

3.2. Next, we construct uxd̄ ∈ (Axd̄)1 by filling the open box

uzc(x = d̄) for (z, c) ∈ 〈(x′, d′); J − x′〉,
aux(x, d̄)

of shape

((x′, d′); (J − x′) ∪ (J ′ − J); I − x) = ((x′, d′); J ′; I − x) = S′,

where ux′d̄′(x = d̄) ∈ (Ax′d̄′)(x=d̄) = (Axd̄)(x′=d̄′) is the principal side of the
open box.

3.3. Finally, we construct the missing side ux′d′ ∈ (Ax′d′)1 by filling

uxd̄(x′ = d′),
uzc(x′ = d′) for z ∈ J − x′, c ∈ 2, and
aux(x′, d′)

of shape ((x, d); (J − x) ∪ (J ′ − J); I − x′) = ((x, d); J ′; I − x′).
3.4. This concludes the construction of ~u in this case.
We have to verify that this definition satisfies the uniformity conditions,

i.e., that equations (4.9) are valid. Let f : I − x→ L be defined on x′, J ′.
Assume fy = b for some y ∈ J . To simplify notations, say f = (z = b).

Then y /∈ x′, J ′ since f was defined on x′, J ′. Thus we obtain

(〈x〉~u)(y = b) = wyb = [(Ayb)(x=d)]S′(x=d)(~w(x = d))

as constructed in step 1, which we had to show.
Let us now assume that f is also defined on J . We have to show

(〈x〉~u)f = [(|U|Sf ′ ~Af ′)1]S′f (~wf)

where f ′ = (f, x = x∗) with x∗ fresh. Let us denote the right hand side
element by 〈x∗〉~u∗ and all abbreviations used in the definition of ~u∗ will be
decorated with a ∗ as well (e.g., aux∗). Thus we have to show ~uf ′ = ~u∗. Since
f is injective x′ ∈ J iff fx′ ∈ fJ , and thus ~u and ~u∗ are defined via the same

71

case. Moreover, for (y, b) ∈ 〈S′〉 − 〈S〉 (which is iff (fy, b) ∈ 〈S′f〉 − 〈Sf ′〉) we
have

w∗(fy)b = wyb(f − y) = (〈x〉~uyb)(f − y) = 〈x∗〉 ~uyb(f − y, x = x∗)

and thus aux(z, c)(f ′ − z) = aux∗(f ′z, c) for (z, c) ∈ 〈S〉. Now for example, in
case 2 the first construction of u∗(fx)d̄ is by filling aux∗(fx, d̄), so

u∗
x∗d̄

= [(A∗
x∗d̄

)1](aux∗(x∗, d̄))
= [(A∗

x∗d̄
)1](aux(x, d̄)(f ′ − x))

= [(Axd̄)f](aux(x, d̄)f)
= uxd̄f = uxd̄(f ′ − x)

using the uniformity condition of (Axd̄)1. Similarly, in the construction of the
u∗(fy)b for (y, b) ∈ 〈S〉, y 6= x. The other case is analogous, concluding the
proof.

Theorem. U is a Kan cubical set.

Proof. We extend the composition operations of the previous lemma to filling
operations making U into a Kan cubical set. Let S = ((x, d); J ; I) be an
open box shape in I and ~A an S-open box in U(I), i.e., adjacent compatible
Aya ∈ U(I−y) for (y, a) ∈ 〈S〉. We first define the filling A = [U]S ~A as a type
yI ` Axd and then explain its Kan structure. Note that this will be such that
A(x = d) = Axd with Axd := |U|S ~A as constructed in the preceding lemma.

For f : I → K we give a (small) set Af . In case fy = b for some (y, b) ∈
〈S〉∪{(x, d)} we have f = (y = b)(f −y) and set Af = (Ayb)(f−y). Otherwise,
i.e., f is defined on x, J , we can w.l.o.g. assume f = 1 : I → I as we otherwise
set Af = ([U]Sf ~Af)1. The set A1 is now defined as follows: an element is of
the form 〈z〉~w where ~w is an open box in ~Asz of shape Ssz and z is fresh, so
~w is given by elements wyb ∈ (Ayb)sz

for (y, b) ∈ 〈S〉; moreover, we require for
(y, b) ∈ 〈S〉 with y 6= x that wyb(x = 1) # z, i.e., wyb is degenerate along z.
Here z is a bound variable. Let us illustrate this definition in the special case
where J = y and d = 1: such an element ~w is given by

wx0

wy0

wy1

z y

x

Ax0

Ay0

Ay1

72 Chapter 4. The Universe of Kan Cubical Sets

where the dashed lines are required to be degenerate. Note that projecting
~w to (z = 1) gives an element of Ax1 = |U|(~A) (disregarding binders for the
moment). A good way to think of ~w is to imagine wy0 and wy1 as triangles by
shrinking each of the dashed lines to a point, and to think of the dimension z
as “hidden”:

wy0

wy1

y

x
wx0

Here, the right hand lines are the projection (z = 1), which is how we will
define the restriction of the element ~w to (x = 1), and the dots correspond to
the dashed lines above.

The restriction ug ∈ Afg along g : K → L of an element u ∈ Af where
f : I → K is defined as follows: In case fy = b for some (y, b) ∈ 〈S〉 ∪ {(x, d)},
ug is given by the restriction of (Ayb)(f−y). Otherwise, f is defined on x, J

and u = 〈z〉~w with ~w and open box in ~Af of shape (Sf)sz; we set

(〈z〉~w)g =

w(fy)b(z = 0)(g − fy) if g(fy) = b for some (y, b) ∈ 〈S〉,
(〈x〉~w(z = 1))(g − fx) if g(fx) = d and fJ ⊆ def(g),
〈z′〉 ~w(g, z = z′) otherwise,

where in the last case z′ is fresh w.r.t. the codomain of g. In particular, if
f = 1, this definitions reads as

(〈z〉~w)g =

wyb(z = 0)(g − y) if gy = b for some (y, b) ∈ 〈S〉,
(〈x〉~w(z = 1))(g − x) if gx = d and J ⊆ def(g),
〈z′〉 ~w(g, z = z′) otherwise.

This definition deserves some explanation: in case gy = b for (y, b) ∈ 〈S〉,
wyb ∈ (Ayb)sz

and thus wyb(z = 0)(g − y) ∈ (Ayb)(g−y) = Ag; in the second
case where gx = d, ~w(z = 1) is an S-open box in ~A, and thus, 〈x〉~w(z = 1) is
an an element of (Axd)1 = (|U|S ~A)1 (cf. the definition in the previous lemma).
It can be checked that this defines a (small) type yI ` [U]S ~A = A satisfying
(as types, not yet as Kan types)

([U]S ~A)(y = b) = Ayb for (y, b) ∈ 〈S〉

([U]S ~A)(x = d) = |U|S ~A

([U]S ~A)f = [U]Sf ~Af if f is defined on x, J .

The next step is to define the Kan structure on Af where f : I → K.
W.l.o.g. we assume that f = 1 : I → I as otherwise we use the above equations
for the filling. Let ~v be an open box of shape S′ = ((x′, d′); J ′; I) in A = [U]S ~A,
i.e., ~v is given by adjacent-compatible vyb ∈ A(y=b) for (y, b) ∈ 〈S′〉.

73

Note that if (y, b) ∈ 〈S′〉 ∩ 〈S〉, we have vyb ∈ A(y=b) = (Ayb)1.
For (y, b) ∈ 〈S′〉 − 〈S〉, we have vyb ∈ A(y=b) = ([U]S(y=b) ~A(y = b))1, and

so vyb = 〈z〉~wyb where ~wyb is an S(y = b)sz open box in ~A(y = b)sz with the
conditions described above. In particular, wybξc ∈ (Aξc)(y=b)sz

for (ξ, c) ∈ 〈S〉
with

wybξc(ξ
′ = c′) = wybξ′c′(ξ = c) (4.11)

if also (ξ′, c′) ∈ 〈S〉 with ξ 6= ξ′. Moreover, since ~v is adjacent compatible we
get that vyb(y′ = b′) = vy′b′(y = b) for both (y, b), (y′, b′) ∈ 〈S′〉 − 〈S〉, and
thus the corresponding entries at position (ξ, c) ∈ 〈S〉 of the vectors ~wyb and
~wy
′b′ coincide, i.e.,

wybξc(y
′ = b′) = wy

′b′

ξc (y = b). (4.12)
Similar to the preceding lemma, for (ξ, c) ∈ 〈S〉 the adjacent-compatible family
(not necessarily open box) of the wybξc ∈ (Aξc)sz(y=b) for y ∈ J ′ − (J, x) and
b ∈ 2 is denoted by aux(ξ, c). Note that aux(ξ, c) is only defined on J ′− (J, x)
and not on 〈S′〉 − 〈S〉.

We want to construct [A1]S′~v = [([U]S ~A)1]S′~v ∈ A1 in a uniform way so
that it satisfies for f : I → K defined on x′, J ′(

[([U]S ~A)1]S′~v
)
f = [([U]S ~A)f]S′f (~vf)

that is,

(
[([U]S ~A)1]S′~v

)
f =

[(Ayb)(f−y)]S′(~vf) if fy = b for some

(y, b) ∈ {(x, d)} ∪ 〈S〉,
[([U]Sf ~Af)1]S′f (~vf) otherwise.

(4.13)

The element [A1]S′~v will be given by 〈z〉~w with ~w an Ssz open box in ~Asz
with the above provisos. The construction distinguishes several cases where
in each case we assume that the previous cases didn’t apply. We set d̄ = 1− d
and d̄′ = 1− d′.

1. W.l.o.g. x, J ⊆ x′, J ′. For each y ∈ x, J with y /∈ x′, J ′ we extend the
input box ~v with vyb ∈ (Ayb)sz (b ∈ 2) constructed as follows: vyb is the filler
in (Ayb)sz of the open box given by ~v(y = b) of shape S′(y = b) in (Ayb)sz .
The final result will be an open box of shape ((x′, d); J ′∪ ((x, J)− (x′, J ′)); I);
to check that the so added sides indeed are adjacent compatible is similar to
the verification done in the proof of the preceding lemma. Let us illustrate
this in the special case with J = y, J ′ = x, and x′ /∈ x, J (and d = d′ = 1).
We are given the sides enclosed by the solid lines and want to fill the whole
shape:

x′ y

x

74 Chapter 4. The Universe of Kan Cubical Sets

In the picture we are hiding the extra dimension as discussed above. The input
box is extended with the non-principal sides for y by filling the sides indicated
with the double arrows.

2. Case x = x′ and d = d′. Then (x, d̄) ∈ 〈S′〉. A simple special case like
above but with J = J ′ = y can be illustrated by:

1
y

x

Here the algorithm proceeds by first filling along the double arrow labeled “1”,
and then filling along the other arrows taking the side constructed in the first
filling into account as a non-principal side (and where the opposing sides are
the respective degenerates of the indicated points).

2.1. First, we construct wxd̄ ∈ (Axd̄)sz
by filling the open box

vxd̄ ∈ (Axd̄)1,

aux(x, d̄).

Note that aux(x, d̄) is defined on the sides of J ′ − (J, x), which is J ′ − J in
this case. Thus the open box has shape ((z, 1); J ′ − J ; (I − x), z).

2.2. Next, we construct wyb ∈ (Ayb)sz for y ∈ J by filling the open box

vyb ∈ A(y=b) = (Ayb)1, (4.14)
vyb(x = d)sz ∈ (Ayb)sz(x=d), (4.15)
vxd̄(y = b) ∈ (Axd̄)sz(y=b) = (Ayb)sz(x=d̄) (4.16)
aux(y, b)

which is of shape ((z, 1);x, (J ′ − J); (I − y), z). Here (4.14) is the principal
side, (4.15) is at the non-principal side (x, d), and (4.16) is at the (x, d̄) side.

2.3. This concludes the construction of ~w.
3. Case x = x′ and d = 1 − d′ = d̄′. Then the element vxd ∈ A(x=d) =

(Axd)1 = (|U|S ~A)1 is of the form vxd = 〈x〉~u where ~u is an S open box in ~A
by definition of the compositions in the previous lemma. In the same special
case as above, the situation can be depicted as:

2
y

x

Now the order of the filling is reversed: first fill the “triangles” as indicated, and
then along the arrow labeled “2”, taking into account the already constructed

75

sides.
3.1. First, for each (y, b) ∈ J × 2 we construct wyb by filling

uyb(x = d′)sz, (4.17)
vyb ∈ A(y=b) = (Ayb)1, (4.18)
uyb ∈ (Ayb)1, (4.19)
aux(y, b)

in (Ayb)sz
of shape ((x, d̄); z, (J ′ − J); (I − y), z). Here, (4.17) is the principal

face, and (4.18) and (4.19) are the non-principal faces at (z, 0) and (z, 1),
respectively.

3.2. Next, we construct wxd̄ ∈ (Axd̄)sz
by filling the open box given by

uxd̄ ∈ (Axd̄)1,

wyb(x = d̄) ∈ (Ayb)sz(x=d̄) for (y, b) ∈ J × 2,

aux(x, d̄) at all sides of J ′ − J

of shape ((z, 0); J ∪ (J ′ − J); (I − x), z) = ((z, 0); J ′; (I − x), z).
3.3. This concludes the construction of ~w.
4. Case x′ /∈ J . As in the previous case, the element vxd ∈ A(x=d) =

(Axd)1 = (|U|S ~A)1 is of the form vxd = 〈x〉~u where ~u is an S-open box in ~A.
Moreover, vx′d̄′ ∈ A(x′=d̄′) = ([U]S ~A)(x′=d̄′) and since x′ /∈ J and x 6= x′, so
(x′, d̄′) ∈ 〈S′〉 − 〈S〉,

([U] ~A)(x′=d̄′) = ([U] ~A(x′ = d̄′))1,

and so vx′d̄′ = 〈z〉~wx′d̄′ with ~wx
′d̄′ an open box in ~A(x′ = d̄′) (of shape S(x′ =

d̄′)sz).
Let us again illustrate a special case with J = y and J ′ = x, y. We are

given those sides enclosed by solid lines and the top faces are missing:

x′ y

x

Here the algorithm proceeds by first filling the middle cube along the dashed
double arrow, and then the other two cubes double arrows taking into account
the faces of the constructed middle cube (with opposing non-principle side

76 Chapter 4. The Universe of Kan Cubical Sets

given by degenerates).
4.1. First, we construct wxd̄ ∈ (Axd̄)sz

by filling the open box

wx
′d̄′

xd̄
∈ (Axd̄)(x′=d̄′) as principal side,

vxd̄ ∈ A(x=d̄) = (Axd̄)1 at side (z, 0),
uxd̄ ∈ (Axd̄)1 at side (z, 1),
aux(x, d̄) at all sides of J ′ − (x, J),

which is of shape ((x′, d′); z, (J ′ − (J, x)); (I − x), z).
4.2. Next, we construct the other wyb ∈ (Ayb)sz for (y, b) ∈ J ×2 by filling

wx
′d̄′

yb ∈ (Ayb)(x′=d̄′) as principal side,
vyb ∈ A(y=b) = (Ayb)1 at side (z, 0),
uyb ∈ (Ayb)1 at side (z, 1),
wxd̄(y = b) ∈ (Axd̄)sz(y=b) = (Ayb)sz(x=d̄) at side (x, d̄),
uyb(x = d)sz ∈ (Ayb)sz(x=d) at side (x, d),
aux(y, b) at all sides of J ′ − (x, J)

in (Ayb)sz
which is of shape ((x′, d′); z, x, (J ′ − (x, J)); (I − y), z).

4.3. This concludes the construction of ~w.
5. Case x′ ∈ J . As in the previous cases, the element vxd ∈ A(x=d) =

(Axd)1 = (|U|S ~A)1 is of the form vxd = 〈x〉~u where ~u is an S-open box in ~A.
A special case (with J = x′ and J ′ = x, y) of this situation can depicted

as a hollow box where the face indicated with dots is missing:

y
x′

x

Here the algorithm proceeds in three steps: first filling the “prism” opposed to
the dotted square (with principal face being the invisible degenerate square),
then filling the middle cube, and finally filling the prism touching the dotted
square.

5.1. First, we construct wyb ∈ (Ayb)sz for (y, b) ∈ 〈(x′, d′); J −x′〉 by filling
the open box

uyb(x = d)sz ∈ (Ayb)sz(x=d) as principal side (x, d),
vyb ∈ A(y=b) = (Ayb)1 at side (z, 0),
uyb ∈ (Ayb)1 at side (z, 1),
aux(y, b) at all sides of J ′ − (x, J)

77

of shape ((x, d̄); z, (J ′ − (x, J)); (I − y), z).
5.2. Second, we construct wxd̄ ∈ (Axd̄)sz

by filling the following open box:
the elements constructed so far induce an open box

wyb(x = d̄) ∈ (Ayb)sz(x=d̄) = (Axd̄)sz(y=b)

for (y, b) ∈ 〈(x′, d′); J − x′; z, (I − (x, y))〉

which we extend to an open box by adding the non-principal faces

vxd̄ ∈ A(x=d̄) = (Axd̄)1 at side (z, 0),
uyb ∈ (Ayb)1 at side (z, 1),
aux(y, b) at all sides of J ′ − (x, J),

to obtain an open box in (Axd̄)sz of shape ((x′, d′); (J−x′), z, (J ′−J); (I−x), z).
5.3. Last, we construct the missing wx′d′ ∈ (Ax′d′)sz

by filling the open
box given by

ux′d′ ∈ (Ax′d′)1 as principal side at (z, 1),
wxd̄(x′ = d′) ∈ (Axd̄)sz(x′=d′) = (Ax′d′)sz(x=d̄) at side (x, d̄),
ux′d′(x = d)sz at side (x, d),
aux(x′, d′) at all sides of J ′ − (J, x),
wyb(x′ = d′) ∈ (Ayb)sz(x′=d′) = (Ax′d′)sz(y=b) for (y, b) with y ∈ J − x′,

which has shape ((z, 0);x, (J ′ − (J, x)), (J − x′); (I − x′), z).
5.4. This concludes the construction of ~w.
The lengthy verification of the uniformity conditions is similar as sketched

in the previous lemma and is omitted.

78 Chapter 4. The Universe of Kan Cubical Sets

Chapter 5

Conclusion

Let us conclude this part by summarizing what has been done and indicate
future directions of research. We have given a model of dependent types based
on a notion of cubical sets in a constructive metatheory. This model supports
dependent products and sums, identity types, and universes. To give the
interpretation of types we have to require a so-called uniform Kan structure
which is a refinement of Kan’s original extension condition on cubical sets; this
condition is natural given the interpretation of the cubical set operations as
“substitution operations”.

One aspect not discussed in this part is the implementation [25] based on
(a nominal variation of) the Kan cubical set model presented here. To sketch
the basic idea, we start with type theory without identity types plus primi-
tive notions such as Id, refl, subst, substEq, isCenter, and funExt. (The
implementation also supports primitives which entail the univalence axiom.)
There is an evaluation of terms (which may dependent on the just mentioned
primitives) into values. Each value depends on finitely many names and there
are the basic operations of cubical sets on values: we can rename a name into
a fresh name or take a face. Values reflect the constructions in the model;
e.g., there is path abstraction 〈x〉u and filling operations. During evaluation
names are introduced, e.g., refl a is evaluated to 〈x〉u where u is the value of
a and x is a fresh name for u (in the implementation degeneracy maps are im-
plicit). Moreover, the primitives are evaluated to values like it was described
in this part of the thesis. Naturally, we also have to explain the Kan structure
operations for each type. During type-checking the aforementioned primitives
are treated as uninterpreted constants. But whenever the type-checker has to
check for conversion of two terms this is done by evaluating their two values
and comparing those values.

As we have seen, in the model the usual equation for the J-eliminator holds
only up to propositional equality and not definitional equality. Restricting
to regular Kan types (cf. Section 3.4) allows for definitional equality; this
regularity is, however, not closed under function types. Andrew Swan [77]
recently found a way to recover a definition of a proper identity type on top

80 Chapter 5. Conclusion

of the weak identity type which satisfies the definitional equality; roughly
speaking, elements in the proper identity types are built from elements in the
weak one, so paths, but additionally are marked where they are known to be
constant. In the next part of this thesis we will see a variation of the model
where this construction has a particularly easy description.

The next part of this thesis is about a refined notion of the cubical set
model covered in this part. The main difference to the present model is to use a
variation of cubical sets: these are also equipped with the so-called connections
which correspond to operations x ∧ y and x ∨ y on names, satisfying the rules
of a (bounded) distributive lattice; for cubical sets this allows, e.g., given a
u(x) depending on the name x to form the square (leaving degeneracy maps
implicit):

u(0)

u(0)

u(y)

u(x)

u(x ∧ y)

This square is such that if u degenerate along x the square is (the degenerate
of) u(0). Moreover, this variation of cubical sets also allows taking diagonals,
i.e., if a u depends on a name x there is an operation u(x = y) even if u itself
depends on y! Another difference to the present model is in the Kan struc-
ture: one only requires composition operations (the filling operations can be
derived from those with the help of connections) but on more general “open
box shapes”. (One can also add symmetries 1 − x so that the structure on
names becomes that of a de Morgan algebra.) This model has also been im-
plemented and extended with an (in parts experimental) implementation of
higher inductive types [27].

Another direction of future research is to explore the relations with the
more categorically formulated model constructions using the notion of weak
factorization systems. Since we don’t model the definitional equality of J here,
it is clear that the definition of J does not come from an underlying factoriza-
tion system. Ongoing work [77] aims to give a variation of the current model
using algebraic weak factorization system (also in a constructive metatheory).
Indeed Swan and the author (private communication) could check that an
argument by Christian Sattler (private communication) to give a model struc-
ture also works for cubical sets as considered in this part—assuming that one
can show univalence for this model. Especially some aspects of the variation
of the model mentioned in the previous paragraph has a lot of resemblance
with the work on path object categories by van den Berg and Garner [81];
[33] shows that cubical sets with connections form an instance of such a path
object category.

Another direction of work is to formulate a cubical type theory, i.e., a type
theory where one can directly argue about and manipulate the (hyper) cube
structure—this is done in the second part of this thesis. In such a theory,

81

names (and related concepts like name/path abstraction and application) are
first-class entities, as well as the Kan structure is exposed to the users. Such
a system formulates typing rules underlying the values from the implementa-
tions mentioned above. The uninterpreted constants from before, like function
extensionality, can then directly be implemented inside this cubical type the-
ory. Another aspect of directly being able to manipulate higher-dimensional
cubes is that it allows for simpler proofs when doing synthetic homotopy the-
ory inside type theory [56]. An implementation of such a cubical type theory
is ongoing work [27]. A similar such “enriched” type theory for internalized
parametricity was recently given in [12, 64] (based on a presheaf model simi-
lar to the one considered here). Similar type theories have been proposed by
Altenkirch and Kaposi [5], Polonsky [73], and Brunerie and Licata [21].

82 Chapter 5. Conclusion

Part II

Cubical Type Theory

Chapter 6

Cubical Type Theory: A
Constructive Interpretation
of the Univalence Axiom

6.1 Introduction

This work is a continuation of the program started in [15, 50] to provide a
constructive justification of Voevodsky’s univalence axiom [87]. This axiom
allows many improvements for the formalization of mathematics in type the-
ory: function extensionality, identification of isomorphic structures, etc. In
order to preserve the good computational properties of type theory it is cru-
cial that postulated constants have a computational interpretation. Like in
[15, 50, 71] our work is based on a nominal extension of λ-calculus, using
names to represent formally elements of the unit interval [0, 1]. This paper
presents two main contributions.

The first one is a refinement of the semantics presented in [15, 50]. We add
new operations on names corresponding to the fact that the interval [0, 1] is
canonically a de Morgan algebra [10]. This allows us to significantly simplify
our semantical justifications. In the previous work, we noticed that it is crucial
for the semantics of higher inductive types [79] to have a “diagonal” operation.
By adding this operation we can provide a semantical justification of some
higher inductive types and we give two examples (the spheres and propositional
truncation). Another shortcoming of the previous work was that using path
types as equality types did not provide a justification of the computation rule
of the Martin-Löf identity type [59] as a judgmental equality. This problem
has been solved by Andrew Swan [77], in the framework of [15, 50, 71], who
showed that we can define a new type, equivalent to, but not judgmentally
equal to the path type. This has a simple definition in the present framework.

86 Chapter 6. Cubical Type Theory

The second contribution is the design of a type system1 inspired by this
semantics which extends Martin-Löf type theory [62, 59]. We add two new
operations on contexts: addition of new names representing dimensions and
a restriction operation. Using these we can define a notion of extensibility
which generalizes the notion of being connected by a path, and then a Kan
composition operation that expresses that being extensible is preserved along
paths. We also define a new operation on types which expresses that this
notion of extensibility is preserved by equivalences. The axiom of univalence,
and composition for the universe, are then both expressible using this new
operation.

The paper is organized as follows. The first part, Sections 6.2 to 6.7,
presents the type system. The second part, Section 6.8, provides its semantics
in cubical sets. Finally, in Section 6.9, we present two possible extensions: the
addition of an identity type, and two examples of higher inductive types.

6.2 Basic Type Theory
In this section we introduce the version of dependent type theory on which
the rest of the paper is based. This presentation is standard, but included for
completeness. The type theory that we consider has a type of natural numbers,
but no universes (we consider the addition of universes in Section 6.7). It
also has β and η-conversion for dependent functions and surjective pairing for
dependent pairs.

The syntax of contexts, terms and types is specified by:

Γ,∆ ::= () | Γ, x : A Contexts

t, u,A,B ::= x | λx : A. t | t u | (x : A)→ B Π-types
| (t, u) | t.1 | t.2 | (x : A)×B Σ-types
| 0 | s u | natrec t u | N Natural numbers

We write A → B for the non-dependent function space and A × B for
the type of non-dependent pairs. Terms and types are considered up to α-
equivalence of bound variables. Substitutions, written σ = (x1/u1, . . . , xn/un),
are defined to act on expressions as usual, i.e., simultaneously replacing xi by
ui, renaming bound variables whenever necessary. The inference rules of this
system are presented in Figure 6.1 and Figure 6.2 where in the η-rule for Π-
and Σ-types we omitted the premises that t and u should have the respective
type.

We define ∆ ` σ : Γ by induction on Γ. We have ∆ ` () : () (empty
substitution) and ∆ ` (σ, x/u) : Γ, x : A if ∆ ` σ : Γ and ∆ ` u : Aσ.

We write J for an arbitrary judgment and, as usual, we consider also hypo-
thetical judgments Γ ` J in a context Γ.

1We have implemented a type-checker for this system in Haskell, which is available at:
https://github.com/mortberg/cubicaltt

https://github.com/mortberg/cubicaltt

6.2. Basic Type Theory 87

Well-formed contexts, Γ ` (The condition x /∈ dom(Γ) means that x is not
declared in Γ)

() `
Γ ` A

Γ, x : A `
(x /∈ dom(Γ))

Well-formed types, Γ ` A

Γ, x : A ` B
Γ ` (x : A)→ B

Γ, x : A ` B
Γ ` (x : A)×B

Γ `
Γ ` N

Well-typed terms, Γ ` t : A

Γ ` t : A Γ ` A = B

Γ ` t : B
Γ, x : A ` t : B

Γ ` λx : A. t : (x : A)→ B

Γ `
Γ ` x : A

(x : A ∈ Γ)
Γ ` t : (x : A)→ B Γ ` u : A

Γ ` t u : B(x/u)

Γ ` t : (x : A)×B
Γ ` t.1 : A

Γ ` t : (x : A)×B
Γ ` t.2 : B(x/t.1)

Γ, x : A ` B Γ ` t : A Γ ` u : B(x/t)
Γ ` (t, u) : (x : A)×B

Γ `
Γ ` 0 : N

Γ ` n : N
Γ ` s n : N

Γ, x : N ` P Γ ` a : P (x/0) Γ ` b : (n : N)→ P (x/n)→ P (x/s n)
Γ ` natrec a b : (x : N)→ P

Figure 6.1: Context, type, and term formation rules of the basic type theory

88 Chapter 6. Cubical Type Theory

Type equality, Γ ` A = B (Congruence and equivalence rules which are omit-
ted)
Term equality, Γ ` a = b : A (Congruence and equivalence rules are omitted)

Γ ` t = u : A Γ ` A = B

Γ ` t = u : B
Γ, x : A ` t : B Γ ` u : A

Γ ` (λx : A. t) u = t(x/u) : B(x/u)

Γ, x : A ` t x = u x : B
Γ ` t = u : (x : A)→ B

Γ, x : A ` B Γ ` t : A Γ ` u : B(x/t)
Γ ` (t, u).1 = t : A

Γ, x : A ` B Γ ` t : A Γ ` u : B(x/t)
Γ ` (t, u).2 = u : B(x/t)

Γ, x : A ` B Γ ` t.1 = u.1 : A Γ ` t.2 = u.2 : B(x/t.1)
Γ ` t = u : (x : A)×B

Γ, x : N ` P Γ ` a : P (x/0) Γ ` b : (n : N)→ P (x/n)→ P (x/s n)
Γ ` natrec a b 0 = a : P (x/0)

Γ, x : N ` P
Γ ` a : P (x/0) Γ ` b : (n : N)→ P (x/n)→ P (x/s n) Γ ` n : N

Γ ` natrec a b (s n) = b n (natrec a b n) : P (x/s n)

Figure 6.2: Judgmental equality rules of the basic type theory

6.3. Path Types 89

The following lemma will be valid for all extensions of type theory we
consider below.

Lemma 6.2.1. Substitution is admissible:

Γ ` J ∆ ` σ : Γ
∆ ` Jσ

In particular, weakening is admissible, i.e., a judgment valid in a context stays
valid in any extension of this context.

6.3 Path Types
As in [15, 71] we assume that we are given a discrete infinite set of names
(representing directions) i, j, k, . . . We define I to be the free de Morgan al-
gebra [10] on this set of names. This means that I is a bounded distributive
lattice with top element 1 and bottom element 0 with an involution 1 − r
satisfying:

1− 0 = 1 1− 1 = 0 1− (r ∨ s) = (1− r) ∧ (1− s)

1− (r ∧ s) = (1− r) ∨ (1− s)

The elements of I can hence be described by the following grammar:

r, s ::= 0 | 1 | i | 1− r | r ∧ s | r ∨ s

The set I also has decidable equality, and as a distributive lattice, it can
be described as the free distributive lattice generated by symbols i and 1 −
i [10]. As in [15], the elements in I can be thought as formal representations
of elements in [0, 1], with r ∧ s representing min(r, s) and r ∨ s representing
max(r, s). With this in mind it is clear that (1− r)∧ r 6= 0 and (1− r)∨ r 6= 1
(unless r is 0 or 1).
Remark 6.3.1. We could instead also use a so-called Kleene algebra [52], i.e., a
de Morgan algebra satisfying in addition r∧(1−r) 6 s∨(1−s). The free Kleene
algebra on the set of names can be described as above but by additionally
imposing the equations i ∧ (1 − i) 6 j ∨ (1 − j) on the generators; this still
has a decidable equality. Note that [0, 1] with the operations described above
is a Kleene algebra. With this added condition, r = s if, and only if, their
interpretations in [0, 1] are equal. A consequence of using a Kleene algebra
instead would be that more terms would be judgmentally equal in the type
theory.

6.3.1 Syntax and Inference Rules
Contexts can now be extended with name declarations:

Γ,∆ ::= . . . | Γ, i : I

90 Chapter 6. Cubical Type Theory

together with the context rule:

Γ `
Γ, i : I `

(i /∈ dom(Γ))

A judgment of the form Γ ` r : I means that Γ ` and r in I depends only on
the names declared in Γ. The judgment Γ ` r = s : I means that r and s are
equal as elements of I, Γ ` r : I, and Γ ` s : I. Note, that judgmental equality
for I will be re-defined once we introduce restricted contexts in Section 6.4.

The extension to the syntax of basic dependent type theory is:

t, u,A,B ::= . . .
| Path A t u | 〈i〉 t | t r Path types

Path abstraction, 〈i〉 t, binds the name i in t, and path application, t r, applies
a term t to an element r : I. This is similar to the notion of name-abstraction
in nominal sets [70].

The substitution operation now has to be extended to substitutions of
the form (i/r). There are special substitutions of the form (i/0) and (i/1)
corresponding to taking faces of an n-dimensional cube, we write these simply
as (i0) and (i1).

The inference rules for path types are presented in Figure 6.3 where again
in the η-rule we omitted that t and u should be appropriately typed.

Γ ` A Γ ` t : A Γ ` u : A
Γ ` Path A t u

Γ ` A Γ, i : I ` t : A
Γ ` 〈i〉 t : Path A t(i0) t(i1)

Γ ` t : Path A u0 u1 Γ ` r : I
Γ ` t r : A

Γ ` A Γ, i : I ` t : A Γ ` r : I
Γ ` (〈i〉 t) r = t(i/r) : A

Γ, i : I ` t i = u i : A
Γ ` t = u : Path A u0 u1

Γ ` t : Path A u0 u1

Γ ` t 0 = u0 : A
Γ ` t : Path A u0 u1

Γ ` t 1 = u1 : A

Figure 6.3: Inference rules for path types

We define 1a : Path A a a as 1a = 〈i〉 a, which corresponds to a proof of
reflexivity.

The intuition is that a type in a context with n names corresponds to an

6.3. Path Types 91

n-dimensional cube:

() ` A • A
i : I ` A A(i0) A(i1)A

i : I, j : I ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)

A(j1)

A

A(j0)

A(i0) A(i1)

...
...

Note that A(i0)(j0) = A(j0)(i0). The substitution (i/j) corresponds to
renaming a dimension, while (i/1− i) corresponds to the inversion of a path.
If we have i : I ` p with p(i0) = a and p(i1) = b then it can be seen as a line

a b
p

in direction i, then:
b a

p(i/1−i)

The substitutions (i/i ∧ j) and (i/i ∨ j) correspond to special kinds of
degeneracies called connections [19]. The connections p(i/i∧ j) and p(i/i∨ j)
can be drawn as the squares:

a b

a a

p

p(i/i ∧ j)

p(i0)

p(i0) p(i/j)

b b

a b

p(i1)

p(i/i ∨ j)

p

p(i/j) p(i1)
j

i

where, for instance, the right-hand side of the left square is computed as

p(i/i ∧ j)(i1) = p(i/1 ∧ j) = p(i/j)

and the bottom and left-hand sides are degenerate.

6.3.2 Examples
Representing equalities using path types allows novel definitions of many stan-
dard operations on identity types that are usually proved by identity elimina-
tion. For instance, the fact that the images of two equal elements are equal
can be defined as:

Γ ` a : A Γ ` b : A Γ ` f : A→ B Γ ` p : Path A a b

Γ ` 〈i〉 f (p i) : Path B (f a) (f b)

92 Chapter 6. Cubical Type Theory

This operation satisfies some judgmental equalities that do not hold judgmen-
tally when the identity type is defined as an inductive family (see Section 7.2
of [15] for details).

We can also define new operations, for instance, function extensionality for
path types can be proved as:

Γ ` f : (x : A)→ B
Γ ` g : (x : A)→ B Γ ` p : (x : A)→ Path B (f x) (g x)

Γ ` 〈i〉 λx : A. p x i : Path ((x : A)→ B) f g

To see that this is correct we check that the term has the correct faces, for
instance:

(〈i〉 λx : A. p x i) 0 = λx : A. p x 0 = λx : A. f x = f

We can also justify the fact that singletons are contractible, that is, that
any element in (x : A)× (Path A a x) is equal to (a, 1a):

Γ ` p : Path A a b

Γ ` 〈i〉 (p i, 〈j〉 p (i ∧ j)) : Path ((x : A)× (Path A a x)) (a, 1a) (b, p)

As in the previous work [15, 50] we need to add composition operations,
defined by induction on the type, in order to justify the elimination principle
for paths.

6.4 Systems, Composition, and Transport
In this section we define the operation of context restriction which will allow
us to describe new geometrical shapes corresponding to “sub-polyhedra” of a
cube. Using this we can define the composition operation. From this operation
we will also be able to define the transport operation and the elimination
principle for Path types.

6.4.1 The Face Lattice
The face lattice, F, is the distributive lattice generated by symbols (i = 0) and
(i = 1) with the relation (i = 0) ∧ (i = 1) = 0F. The elements of the face
lattice, called face formulas, can be described by the grammar:

ϕ,ψ ::= 0F | 1F | (i = 0) | (i = 1) | ϕ ∧ ψ | ϕ ∨ ψ

There is a canonical lattice map I → F sending i to (i = 1) and 1 − i to
(i = 0). We write (r = 1) for the image of r : I in F and we write (r = 0) for
(1 − r = 1). We have (r = 1) ∧ (r = 0) = 0F and we define the lattice map
F→ F, ψ 7−→ ψ(i/r) sending (i = 1) to (r = 1) and (i = 0) to (r = 0).

Any element of F is the join of the irreducible elements below it. An
irreducible element of this lattice is a face, i.e., a conjunction of elements of

6.4. Systems, Composition, and Transport 93

the form (i = 0) and (j = 1). This provides a disjunctive normal form for face
formulas, and it follows from this that the equality on F is decidable.

Geometrically, the face formulas describe “sub-polyhedra” of a cube. For
instance, the element (i = 0) ∨ (j = 1) can be seen as the union of two
faces of the square in directions j and i. If I is a finite set of names, we
define the boundary of I as the element ∂I of F which is the disjunction of all
(i = 0) ∨ (i = 1) for i in I. It is the greatest element depending at most on
elements in I which is < 1F.

We write Γ ` ψ : F to mean that ψ is a face formula using only the names
declared in Γ. We introduce then the new restriction operation on contexts:

Γ,∆ ::= . . . | Γ, ϕ

together with the rule:

Γ ` ϕ : F
Γ, ϕ `

This allows us to describe new geometrical shapes: as we have seen above,
a type in a context Γ = i : I, j : I can be thought of as a square, and a type in
the restricted context Γ, ϕ will then represent a compatible union of faces of
this square. This can be illustrated by:

i : I, (i = 0) ∨ (i = 1) ` A A(i0) • • A(i1)

i : I, j : I, (i = 0) ∨ (j = 1) ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0)

A(j1)

A(i0)

i : I, j : I, (i = 0) ∨ (i = 1) ∨ (j = 0) ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)
A(j0)

A(i0) A(i1)

There is a canonical map from the lattice F to the congruence lattice of I,
which is distributive [10], sending (i = 1) to the congruence identifying i with
1 (and 1− i with 0) and sending (i = 0) to the congruence identifying i with
0 (and 1 − i with 1). In this way, any element ψ of F defines a congruence
r = s (mod. ψ) on I.

This congruence can be described as a substitution if ψ is irreducible; for
instance, if ψ is (i = 0) ∧ (j = 1) then r = s (mod. ψ) is equivalent to
r(i0)(j1) = s(i0)(j1). The congruence associated to ψ = ϕ0 ∨ ϕ1 is the meet

94 Chapter 6. Cubical Type Theory

of the congruences associated to ϕ0 and ϕ1 respectively, so that we have, e.g.,
i = 1− j (mod. ψ) if ϕ0 = (i = 0) ∧ (j = 1) and ϕ1 = (i = 1) ∧ (j = 0).

To any context Γ we can associate recursively a congruence on I, the congru-
ence on Γ, ψ being the join of the congruence defined by Γ and the congruence
defined by ψ. The congruence defined by () is equality in I, and an extension
x : A or i : I does not change the congruence. The judgment Γ ` r = s : I then
means that r = s (mod. Γ), Γ ` r : I, and Γ ` s : I.

In the case where Γ does not use the restriction operation, this judgment
means r = s in I. If i is declared in Γ, then Γ, (i = 0) ` r = s : I is equivalent
to Γ ` r(i0) = s(i0) : I. Similarly any context Γ defines a congruence on F
with Γ, ψ ` ϕ0 = ϕ1 : F being equivalent to Γ ` ψ ∧ ϕ0 = ψ ∧ ϕ1 : F.

As explained above, the elements of I can be seen as formal representations
of elements in the interval [0, 1]. The elements of F can then be seen as formulas
on elements of [0, 1]. We have a simple form of quantifier elimination on F:
given a name i, we define ∀i : F → F as the lattice morphism sending (i = 0)
and (i = 1) to 0F, and being the identity on all the other generators. If ψ is
independent of i, we have ψ 6 ϕ if, and only if, ψ 6 ∀i.ϕ. For example, if ϕ is
(i = 0)∨ ((i = 1)∧ (j = 0))∨ (j = 1), then ∀i.ϕ is (j = 1). This operation will
play a crucial role in Section 6.6.2 for the definition of composition of glueing.

Since F is not a Boolean algebra, we don’t have in general ϕ = (ϕ ∧ (i =
0)) ∨ (ϕ ∧ (i = 1)), but we always have the following decomposition:

Lemma 6.4.1. For any element ϕ of F and any name i we have

ϕ = (∀i.ϕ) ∨ (ϕ ∧ (i = 0)) ∨ (ϕ ∧ (i = 1))

We also have ϕ ∧ (i = 0) 6 ϕ(i0) and ϕ ∧ (i = 1) 6 ϕ(i1).

6.4.2 Syntax and Inference Rules for Systems
Systems allow to introduce “sub-polyhedra” as compatible unions of cubes.
The extension to the syntax of dependent type theory with path types is:

t, u,A,B ::= . . .
| [ϕ1 t1, . . . , ϕn tn] Systems

We allow n = 0 and get the empty system []. As explained above, a context
now corresponds in general to the union of sub-faces of a cube. In Figure 6.4 we
provide operations for combining compatible systems of types and elements,
the side condition for these rules is that Γ ` ϕ1 ∨ · · · ∨ ϕn = 1F : F. This
condition requires Γ to be sufficiently restricted: for example ∆, (i = 0)∨ (i =
1) ` (i = 0) ∨ (i = 1) = 1F. The first rule introduces systems of types, each
defined on one ϕi and requiring the types to agree whenever they overlap;
the second rule is the analogous rule for terms. The last two rules make sure
that systems have the correct faces. The third inference rule says that that
any judgment which is valid locally at each ϕi is valid; note that in particular
n = 0 is allowed (then the side condition becomes Γ ` 0F = 1F : F).

6.4. Systems, Composition, and Transport 95

Γ, ϕ1 ` A1 · · · Γ, ϕn ` An Γ, ϕi ∧ ϕj ` Ai = Aj (1 6 i, j 6 n)
Γ ` [ϕ1 A1, . . . , ϕn An]

Γ ` A Γ, ϕ1 ` t1 : A · · · Γ, ϕn ` tn : A
Γ, ϕi ∧ ϕj ` ti = tj : A (1 6 i, j 6 n)

Γ ` [ϕ1 t1, . . . , ϕn tn] : A

Γ, ϕ1 ` J · · · Γ, ϕn ` J
Γ ` J

Γ ` [ϕ1 A1, . . . , ϕn An] Γ ` ϕi = 1F : F
Γ ` [ϕ1 A1, . . . , ϕn An] = Ai

Γ ` [ϕ1 t1, . . . , ϕn tn] : A Γ ` ϕi = 1F : F
Γ ` [ϕ1 t1, . . . , ϕn tn] = ti : A

Figure 6.4: Inference rules for systems with side condition Γ ` ϕ1 ∨ · · · ∨ϕn =
1F : F

Note that when n = 0 the second of the above rules should be read as: if
Γ ` 0F = 1F : F and Γ ` A, then Γ ` [] : A.

We extend the definition of the substitution judgment by ∆ ` σ : Γ, ϕ if
∆ ` σ : Γ, Γ ` ϕ : F, and ∆ ` ϕσ = 1F : F.

If Γ, ϕ ` u : A, then Γ ` a : A[ϕ 7→ u] is an abbreviation for Γ ` a : A
and Γ, ϕ ` a = u : A. In this case, we see this element a as a witness that the
partial element u, defined on the “extent” ϕ (using the terminology from [36]),
is extensible. More generally, we write Γ ` a : A[ϕ1 7→ u1, . . . , ϕk 7→ uk] for
Γ ` a : A and Γ, ϕi ` a = ui : A for i = 1, . . . , k.

For instance, if Γ, i : I ` A and Γ, i : I, ϕ ` u : A where ϕ = (i = 0)∨(i = 1)
then the element u is determined by two elements Γ ` a0 : A(i0) and Γ ` a1 :
A(i1) and an element Γ, i : I ` a : A[(i = 0) 7→ a0, (i = 1) 7→ a1] gives a path
connecting a0 and a1.

Lemma 6.4.2. The following rules are admissible:2

Γ ` ϕ 6 ψ : F Γ, ψ ` J
Γ, ϕ ` J

Γ, 1F ` J

Γ ` J
========

Γ, ϕ, ψ ` J

Γ, ϕ ∧ ψ ` J
===========

Furthermore, if ϕ is independent of i, the following rules are admissible

Γ, i : I, ϕ ` J

Γ, ϕ, i : I ` J
===========

2The inference rules with double line are each a pair of rules, because they can be used
in both directions.

96 Chapter 6. Cubical Type Theory

and it follows that we have in general:

Γ, i : I, ϕ ` J
Γ,∀i.ϕ, i : I ` J

6.4.3 Composition Operation
The syntax of compositions is given by:

t, u,A,B ::= . . .
| compi A [ϕ 7→ u] a0 Compositions

where u is a system on the extent ϕ.
The composition operation expresses that being extensible is preserved

along paths: if a partial path is extensible at 0, then it is extensible at 1.

Γ ` ϕ : F Γ, i : I ` A Γ, ϕ, i : I ` u : A Γ ` a0 : A(i0)[ϕ 7→ u(i0)]
Γ ` compi A [ϕ 7→ u] a0 : A(i1)[ϕ 7→ u(i1)]

Note that compi binds i in A and u and that we have in particular the following
equality judgments for systems:

Γ ` compi A [1F 7→ u] a0 = u(i1) : A(i1)

If we have a substitution ∆ ` σ : Γ, then

(compi A [ϕ 7→ u] a0)σ = compj A(σ, i/j) [ϕσ 7→ u(σ, i/j)] a0σ

where j is fresh for ∆, which corresponds semantically to the uniformity [15, 50]
of the composition operation.

We abbreviate [
∨
i ϕi 7→ [ϕ1 u1, . . . , ϕn un]] by [ϕ1 7→ u1, . . . , ϕn 7→ un],

and in particular we write [] for [0F 7→ []].

Example 6.4.3. With composition we can justify transitivity of path types:

Γ ` p : Path A a b Γ ` q : Path A b c

Γ ` 〈i〉 compj A [(i = 0) 7→ a, (i = 1) 7→ q j] (p i) : Path A a c

This composition can be visualized as the dashed arrow in the square:

a c

a b

a q j

p i

j

i

6.4. Systems, Composition, and Transport 97

6.4.4 Kan Filling Operation
As we have connections we also get Kan filling operations from compositions:

Γ, i : I ` filli A [ϕ 7→ u] a0 =
compj A(i/i ∧ j) [ϕ 7→ u(i/i ∧ j), (i = 0) 7→ a0] a0 : A

where j is fresh for Γ. The element Γ, i : I ` v = filli A [ϕ 7→ u] a0 : A satisfies:

Γ ` v(i0) = a0 : A(i0) Γ ` v(i1) = compi A [ϕ 7→ u] a0 : A(i1)

Γ, ϕ, i : I ` v = u : A

This means that we can not only compute the lid of an open box but also its
filling. If ϕ is the boundary formula on the names declared in Γ, we recover
the Kan operation for cubical sets [53].

6.4.5 Equality Judgments for Composition
The equality judgments for compi C [ϕ 7→ u] a0 are defined by cases on the type
C which depends on i, i.e., Γ, i : I ` C. The right hand side of the definitions
are all equal to u(i1) on the extent ϕ by the typing rule for compositions.
There are four cases to consider:

Product Types, C = (x : A)→ B

Given Γ, ϕ, i : I ` µ : C and Γ ` λ0 : C(i0)[ϕ 7→ µ(i0)] the composition will be
of type C(i1). For Γ ` u1 : A(i1), we first let:

w = filli A(i/1− i) [] u1 (in context Γ, i : I and of type A(i/1− i))
v = w(i/1− i) (in context Γ, i : I and of type A)

Using this we define the equality judgment:

Γ ` (compi C [ϕ 7→ µ] λ0) u1 =
compi B(x/v) [ϕ 7→ µ v] (λ0 v(i0)) : B(x/v)(i1)

Sum Types, C = (x : A)×B

Given Γ, ϕ, i : I ` w : C and Γ ` w0 : C(i0)[ϕ 7→ w(i0)] we let:

a = filli A [ϕ 7→ w.1] w0.1 (in context Γ, i : I and of type A)
c1 = compi A [ϕ 7→ w.1] w0.1 (in context Γ and of type A(i1))
c2 = compi B(x/a) [ϕ 7→ w.2] w0.2 (in context Γ and of type B(x/a)(i1))

From which we define:

Γ ` compi C [ϕ 7→ w] w0 = (c1, c2) : C(i1)

98 Chapter 6. Cubical Type Theory

Natural Numbers, C = N

In this we define compi C [ϕ 7→ n] n0 by recursion:

Γ ` compi C [ϕ 7→ 0] 0 = 0 : C
Γ ` compi C [ϕ 7→ s n] (s n0) = s (compi C [ϕ 7→ n] n0) : C

Path Types, C = Path A u v

Given Γ, ϕ, i : I ` p : C and Γ ` p0 : C(i0)[ϕ 7→ p(i0)] we define:

Γ ` compi C [ϕ 7→ p] p0 =
〈j〉 compi A [ϕ 7→ p j, (j = 0) 7→ u, (j = 1) 7→ v] (p0 j) : C(i1)

6.4.6 Transport
Composition for ϕ = 0F corresponds to transport:

Γ ` transpi A a = compi A [] a : A(i1)

Together with the fact that singletons are contractible, from Section 6.3.2,
we get the elimination principle for Path types in the same manner as explained
for identity types in Section 7.2 of [15].

6.5 Derived Notions and Operations
This section defines various notions and operations that will be used for defin-
ing compositions for the glue operation in the next section. This operation
will then be used to define the composition operation for the universe and to
prove the univalence axiom.

6.5.1 Contractible Types
We define isContr A = (x : A)× ((y : A)→ Path A x y). A proof of isContr A
witnesses the fact that A is contractible.

Given Γ ` p : isContr A and Γ, ϕ ` u : A we define the operation3

Γ ` contr p [ϕ 7→ u] = compi A [ϕ 7→ p.2 u i] p.1 : A[ϕ 7→ u].

Conversely, we have the following characterization of contractible types:

Lemma 6.5.1. Let Γ ` A and assume that we have one operation

Γ, ϕ ` u : A
Γ ` contr [ϕ 7→ u] : A[ϕ 7→ u]

then we can find an element in isContr A.
3This expresses that the restriction map Γ, ϕ → Γ has the left lifting property w.r.t. any

“trivial fibration”, i.e., contractible extensions Γ, x : A → Γ. The restriction maps Γ, ϕ → Γ
thus represent “cofibrations” while the maps Γ, x : A → Γ represent “fibrations”.

6.6. Glueing 99

Proof. We define x = contr [] : A and prove that any element y : A is path equal
to x. For this, we introduce a fresh name i : I and define ϕ = (i = 0)∨ (i = 1)
and u = [(i = 0) 7→ x, (i = 1) 7→ y]. Using this we obtain Γ, i : I ` v =
contr [ϕ 7→ u] : A[ϕ 7→ u]. In this way, we get a path 〈i〉 contr [ϕ 7→ u]
connecting x and y.

6.5.2 The pres Operation
The pres operation states that the image of a composition is path equal to the
composition of the respective images, so that any function preserves composi-
tion, up to path equality.

Lemma 6.5.2. We have an operation:

Γ, i : I ` f : T → A
Γ ` ϕ : F Γ, ϕ, i : I ` t : T Γ ` t0 : T (i0)[ϕ 7→ t(i0)]

Γ ` presi f [ϕ 7→ t] t0 : (Path A(i1) c1 c2)[ϕ 7→ 〈j〉 (f t)(i1)]

where c1 = compi A [ϕ 7→ f t] (f(i0) t0) and c2 = f(i1) (compi T [ϕ 7→ t] t0).

Proof. Let Γ ` a0 = f(i0) t0 : A(i0) and Γ, i : I ` v = filli T [ϕ 7→ t] t0 : T .
We take presi f [ϕ 7→ t] t0 = 〈j〉 compi A [ϕ ∨ (j = 1) 7→ f v] a0.

Note that presi binds i in f and t.

6.5.3 The equiv Operation
We define isEquiv T A f = (y : A) → isContr ((x : T) × Path A y (f x)) and
Equiv T A = (f : T → A)× isEquiv T A f . If f : Equiv T A and t : T , we may
write f t for f.1 t.

Lemma 6.5.3. If Γ ` f : Equiv T A, we have an operation:

Γ, ϕ ` t : T Γ ` a : A Γ, ϕ ` p : Path A a (f t)
Γ ` equiv f [ϕ 7→ (t, p)] a : ((x : T)× Path A a (f x))[ϕ 7→ (t, p)]

Conversely, if Γ ` f : T → A and we have such an operation, then we can
build a proof that f is an equivalence.

Proof. We define equiv f [ϕ 7→ (t, p)] a = contr (f.2 a) [ϕ 7→ (t, p)] using
the contr operation defined above. The second statement follows from Lemma
6.5.1.

6.6 Glueing
In this section, we introduce the glueing operation. This operation expresses
that to be “extensible” is invariant by equivalence. From this operation, we
can define a composition operation for universes, and prove the univalence
axiom.

100 Chapter 6. Cubical Type Theory

6.6.1 Syntax and Inference Rules for Glueing
We introduce the glueing construction at type and term level by:

t, u,A,B ::= . . .
| Glue [ϕ 7→ (T, f)] A Glue type
| glue [ϕ 7→ t] u Glue term
| unglue [ϕ 7→ f] u Unglue term

We may write simply unglue b for unglue [ϕ 7→ f] b. The inference rules for
these are presented in Figure 6.5.

Γ ` A Γ, ϕ ` T Γ, ϕ ` f : Equiv T A

Γ ` Glue [ϕ 7→ (T, f)] A

Γ ` b : Glue [ϕ 7→ (T, f)] A
Γ ` unglue b : A[ϕ 7→ f b]

Γ, ϕ ` f : Equiv T A Γ, ϕ ` t : T Γ ` a : A[ϕ 7→ f t]
Γ ` glue [ϕ 7→ t] a : Glue [ϕ 7→ (T, f)] A

Γ ` T Γ ` f : Equiv T A

Γ ` Glue [1F 7→ (T, f)] A = T

Γ ` t : T Γ ` f : Equiv T A

Γ ` glue [1F 7→ t] (f t) = t : T

Γ ` b : Glue [ϕ 7→ (T, f)] A
Γ ` b = glue [ϕ 7→ b] (unglue b) : Glue [ϕ 7→ (T, f)] A

Γ, ϕ ` f : Equiv T A Γ, ϕ ` t : T Γ ` a : A[ϕ 7→ f t]
Γ ` unglue (glue [ϕ 7→ t] a) = a : A

Figure 6.5: Inference rules for glueing

It follows from these rules that if Γ ` b : Glue [ϕ 7→ (T, f)] A, then Γ, ϕ `
b : T .

In the case ϕ = (i = 0) ∨ (i = 1) the glueing operation can be illustrated
as the dashed line in:

T0 T1

A(i0) A(i1)

f(i0) ∼ ∼ f(i1)

A

This illustrates why the operation is called glue: it glues together along a

6.6. Glueing 101

partial equivalence the partial type T and the total type A to a total type that
extends T .

Remark 6.6.1. In general Glue [ϕ 7→ (T, f)] A can be illustrated as:

Γ, ϕ Γ

T

A

∼
f

A

Glue [ϕ 7→ (T, f)] A
unglue

This diagram suggests that a construction similar to Glue also appears in the
simplicial set model. Indeed, the proof of Theorem 3.4.1 in [54] contains a
similar diagram where E1 corresponds to Glue [ϕ 7→ (T, f)] A.

Example 6.6.2. Using glueing we can construct a path from an equivalence
Γ ` f : Equiv A B by defining

Γ, i : I ` E = Glue [(i = 0) 7→ (A, f), (i = 1) 7→ (B, idB)] B

so that E(i0) = A and E(i1) = B, where idB : Equiv B B is defined as:

(λx : B. x, λx : B. ((x, 1x), λu : (y : B)×Path B x y. 〈i〉 (u.2 i, 〈j〉 u.2 (i∧j))))

In Section 6.7 we introduce a universe of types U and we will be able to define
a function of type (A B : U)→ Equiv A B → Path U A B by:

λA B : U. λf : Equiv A B. 〈i〉 Glue [(i = 0) 7→ (A, f), (i = 1) 7→ (B, idB)] B

6.6.2 Composition for Glueing
We assume Γ, i : I ` B = Glue [ϕ 7→ (T, f)] A, and define the composition
in B. In order to do so, assume

Γ, ψ, i : I ` b : B Γ ` b0 : B(i0)[ψ 7→ b(i0)]

and define:

Γ, ψ, i : I ` a := unglue b : A[ϕ 7→ f b]
Γ ` a0 := unglue b0 : A(i0)[ϕ(i0) 7→ f(i0) b0, ψ 7→ a(i0)]

102 Chapter 6. Cubical Type Theory

The following provides the algorithm for composition compi B [ψ 7→ b] b0 = b1
of type B(i1)[ψ 7→ b(i1)].

δ = ∀i.ϕ Γ
a′1 = compi A [ψ 7→ a] a0 Γ
t′1 = compi T [ψ 7→ b] b0 Γ, δ
ω = presi f [ψ 7→ b] b0 Γ, δ
(t1, α) = equiv f(i1) [δ 7→ (t′1, ω), ψ 7→ (b(i1), 〈j〉a′1)] a′1 Γ, ϕ(i1)
a1 = compj A(i1) [ϕ(i1) 7→ α j, ψ 7→ a(i1)] a′1 Γ
b1 = glue [ϕ(i1) 7→ t1] a1 Γ

We can check that whenever Γ, i : I ` ϕ = 1F : F the definition of b1
coincides with compi T [ψ 7→ b] b0, which is consistent with the fact that
B = T in this case.

In the next section we will use the glue operation to define the composition
for the universe and to prove the univalence axiom.

6.7 Universe and the Univalence Axiom
As in [62], we now introduce a universe U à la Russell by reflecting all typing
rules and:

Γ `
Γ ` U

Γ ` A : U
Γ ` A

In particular, we have Γ ` Glue [ϕ 7→ (T, f)] A : U whenever Γ ` A : U,
Γ, ϕ ` T : U, and Γ, ϕ ` f : Equiv T A.

6.7.1 Composition for the Universe
In order to describe the composition operation for the universe we first have
to explain how to construct an equivalence from a line in the universe. Given
Γ ` A, Γ ` B, and Γ, i : I ` E, such that E(i0) = A and E(i1) = B, we will
construct equivi E : Equiv A B. In order to do this we first define

Γ ` f := λx : A. transpi E x : A→ B

Γ ` g := λy : B. (transpi E(i/1− i) y)(i/1− i) : B → A

Γ, i : I ` u := λx : A. filli E [] x : A→ E

Γ, i : I ` v := λy : B. (filli E(i/1− i) [] y)(i/1− i) : B → E

such that:

u(i0) = λx : A.x u(i1) = f v(i0) = g v(i1) = λy : B.y

We will now prove that f is an equivalence. Given y : B we see that
(x : A)×Path B y (f x) is inhabited as it contains the element (g y, 〈j〉 θ0(i1))
where

θ0 = filli E [(j = 0) 7→ v y, (j = 1) 7→ u (g y)] (g y).

6.7. Universe and the Univalence Axiom 103

Next, given an element (x, β) of (x : A)× Path B y (f x) we will construct a
path from (g y, 〈j〉 θ0(i1)) to (x, β). Let

θ1 =
(
filli E(i/1− i)

[(j = 0) 7→ (v y)(i/1− i), (j = 1) 7→ (u x)(i/1− i)] (β j)
)
(i/1− i)

and ω = θ1(i0) so Γ, i : I, j : I ` θ1 : E, ω(j0) = g y, and ω(j1) = x. And
further with

δ = compi E [(k = 0) 7→ θ0, (k = 1) 7→ θ1,

(j = 0) 7→ v y, (j = 1) 7→ u ω(j/k)] ω(j/j ∧ k)

we obtain

〈k〉 (ω(j/k), 〈j〉 δ) : Path ((x : A)× Path B y (f x)) (g y, 〈j〉 θ0(i1)) (x, β)

as desired. This concludes the proof that f is an equivalence and thus also the
construction of equivi E : Equiv A B.

Using this we can now define the composition for the universe:

Γ ` compi U [ϕ 7→ E] A0 = Glue [ϕ 7→ (E(i1), equivi E(i/1− i))] A0 : U

Remark 6.7.1. Given Γ, i : I ` E we can also get an equivalence in Equiv A B
(where A = E(i0) and B = E(i1)) with a less direct description by

Γ ` transpi (Equiv A E) idA : Equiv A B

where idA is the identity equivalence as given in Example 6.6.2.

6.7.2 The Univalence Axiom
Given B = Glue [ϕ 7→ (T, f)] A the map unglue : B → A extends f , in the
sense that Γ, ϕ ` unglue b = f b : A if Γ ` b : B.

Theorem 6.7.2. The map unglue : B → A is an equivalence.

Proof. By Lemma 6.5.3 it suffices to construct

b̃ : B[ψ 7→ b] α̃ : Path A u (unglue b̃)[ψ 7→ α]

given Γ, ψ ` b : B and Γ ` u : A and Γ, ψ ` α : Path A u (unglue b).
Since Γ, ϕ ` f : T → A is an equivalence and

Γ, ϕ, ψ ` b : T Γ, ϕ, ψ ` α : Path A u (f b)

we get, using Lemma 6.5.3:

Γ, ϕ ` t : T [ψ 7→ b] Γ, ϕ ` β : Path A u (f t) [ψ 7→ α]

We then define ã = compi A [ϕ 7→ β i, ψ 7→ α i] u, and using this we conclude
by letting b̃ = glue [ϕ 7→ t] ã and α̃ = filli A [ϕ 7→ β i, ψ 7→ α i] u.

104 Chapter 6. Cubical Type Theory

Corollary 6.7.3. For any type A : U the type C = (X : U) × Equiv X A is
contractible.4

Proof. It is enough by Lemma 6.5.1 to show that any partial element ϕ `
(T, f) : C is path equal to the restriction of a total element. The map unglue
extends f and is an equivalence by the previous theorem. Since any two
elements of the type isEquiv X A f.1 are path equal, this shows that any
partial element of type C is path equal to the restriction of a total element.
We can then conclude by Theorem 6.7.2.

Corollary 6.7.4 (Univalence axiom). For any term

t : (A B : U)→ Path U A B → Equiv A B

the map t A B : Path U A B → Equiv A B is an equivalence.

Proof. Both (X : U)×Path U A X and (X : U)× Equiv A X are contractible.
Hence the result follows from Theorem 4.7.7 in [79].

Two alternative proofs of univalence can be found in Appendix 6.B.

6.8 Semantics
In this section we will explain the semantics of the type theory under consid-
eration in cubical sets. We will first review how cubical sets, as a presheaf
category, yield a model of basic type theory, and then explain the additional
so-called composition structure we have to require to interpret the full cubical
type theory.

6.8.1 The Category of Cubes and Cubical Sets
Consider the monad dM on the category of sets associating to each set the free
de Morgan algebra on that set. The category of cubes C is the small category
whose objects are finite subsets I, J,K, . . . of a fixed, discrete, and countably
infinite set, called names, and a morphism Hom(J, I) is a map I → dM(J).
Identities and compositions are inherited from the Kleisli category of dM, i.e.,
the identity on I is given by the unit I → dM(I), and composition fg ∈
Hom(K, I) of g ∈ Hom(K,J) and f ∈ Hom(J, I) is given by µK ◦ dM(g) ◦ f
where µK : dM(dM(K)) → dM(K) denotes multiplication of dM. We will use
f, g, h for morphisms in C and simply write f : J → I for f ∈ Hom(J, I). We

4This formulation of the univalence axiom can be found in the message of Martín
Escardó in:
https://groups.google.com/forum/#!msg/homotopytypetheory/HfCB_b-PNEU/
Ibb48LvUMeUJ
This is also used in the (classical) proofs of the univalence axiom, see Theorem 3.4.1 of [54]
and Proposition 2.18 of [24], where an operation similar to the glueing operation appears
implicitly.

https://groups.google.com/forum/#!msg/homotopytypetheory/HfCB_b-PNEU/Ibb48LvUMeUJ
https://groups.google.com/forum/#!msg/homotopytypetheory/HfCB_b-PNEU/Ibb48LvUMeUJ

6.8. Semantics 105

will often write unions with commas and omit curly braces around finite sets
of names, e.g., writing I, i, j for I ∪ {i, j} and I − i for I − {i} etc.

If i is in I and b is 0I or 1I, we have maps (ib) in Hom(I − i, I) whose
underlying map sends j 6= i to itself and i to b. A face map is a composition
of such maps. A strict map Hom(J, I) is a map I → dM(J) which never takes
the value 0I or 1I. Any f can be uniquely written as a composition f = gh
where g is a face map and h is strict.

Definition 6.8.1. A cubical set is a presheaf on C.

Thus, a cubical set Γ is given by sets Γ(I) for each I ∈ C and maps (called
restrictions) Γ(f) : Γ(I) → Γ(J) for each f : J → I. If we write Γ(f)(ρ) = ρf
for ρ ∈ Γ(I) (leaving the Γ implicit), these maps should satisfy ρ idI = ρ and
(ρf)g = ρ(fg) for f : J → I and g : K → J .

Let us discuss some important examples of cubical sets. Using the canonical
de Morgan algebra structure of the unit interval, [0, 1], we can define a functor

C → Top, I 7→ [0, 1]I . (6.1)

If u is in [0, 1]I we can think of u as an environment giving values in [0, 1] to
each i ∈ I, so that iu is in [0, 1] if i ∈ I. Since [0, 1] is a de Morgan algebra,
this extends uniquely to ru for r ∈ dM(I). So any f : J → I in C induces
f : [0, 1]J → [0, 1]I by i(fu) = (if)u.

To any topological space X we can associate its singular cubical set S(X)
by taking S(X)(I) to be the set of continuous functions [0, 1]I → X.

For a finite set of names I we get the formal cube y I where y : C →
[Cop,Set] denotes the Yoneda embedding. Note that since Top is cocomplete
the functor in (6.1) extends to a cocontinuous functor assigning to each cubical
set its geometric realization as a topological space, in such a way that y I has
[0, 1]I as its geometric realization.

The formal interval I induces a cubical set given by I(I) = dM(I). The face
lattice F induces a cubical set by taking as F(I) to be those ϕ ∈ F which only
use symbols in I. The restrictions along f : J → I are in both cases simply
substituting the symbols i ∈ I by f(i) ∈ dM(J).

As any presheaf category, cubical sets have a subobject classifier Ω where
Ω(I) is the set of sieves on I (i.e., subfunctors of y I). Consider the natural
transformation (· = 1): I → Ω where for r ∈ I(I), (r = 1) is the sieve on I of
all f : J → I such that rf = 1I. The image of (· = 1) is F → Ω, assigning to
each ϕ the sieve of all f with ϕf = 1F.

6.8.2 Presheaf Semantics
The category of cubical sets (with morphisms being natural transformations)
induce—as does any presheaf category—a category with families (CwF) [34]
where the category of contexts and substitutions is the category of cubical sets.
We will review the basic constructions but omit verification of the required
equations (see, e.g., [47, 50, 15] for more details).

106 Chapter 6. Cubical Type Theory

Basic Presheaf Semantics

As already mentioned the category of (semantic) contexts and substitutions is
given by cubical sets and their maps. In this section we will use Γ,∆ to denote
cubical sets and (semantic) substitutions by σ : ∆ → Γ, overloading previous
use of the corresponding meta-variables to emphasize their intended role.

Given a cubical set Γ, the types A in context Γ, written A ∈ Ty(Γ), are
given by sets Aρ for each I ∈ C and ρ ∈ Γ(I) together with restriction maps
Aρ → A(ρf), u 7→ uf for f : J → I satisfying u idI = u and (uf)g = u(fg) ∈
A(ρfg) if g : K → J . Equivalently, A ∈ Ty(Γ) are the presheaves on the
category of elements of Γ. For a type A ∈ Ty(Γ) its terms a ∈ Ter(Γ;A) are
given by families of elements aρ ∈ Aρ for each I ∈ C and ρ ∈ Γ(I) such that
(aρ)f = a(ρf) for f : J → I. Note that our notation leaves a lot implicit;
e.g., we should have written A(I, ρ) for Aρ; A(I, ρ, f) for the restriction map
Aρ→ A(ρf); and a(I, ρ) for aρ.

For A ∈ Ty(Γ) and σ : ∆ → Γ we define Aσ ∈ Ty(∆) by (Aσ)ρ = A(σρ)
and the induced restrictions. If we also have a ∈ Ter(Γ;A), we define aσ ∈
Ter(∆;Aσ) by (aσ)ρ = a(σρ). For a type A ∈ Ty(Γ) we define the cubical
set Γ.A by (Γ.A)(I) being the set of all (ρ, u) with ρ ∈ Γ(I) and u ∈ Aρ;
restrictions are given by (ρ, u)f = (ρf, uf). The first projection yields a map
p : Γ.A→ Γ and the second projection a term q ∈ Ter(Γ.A;Ap). Given σ : ∆→
Γ, A ∈ Ty(Γ), and a ∈ Ter(∆;Aσ) we define (σ, a) : ∆ → Γ.A by (σ, a)ρ =
(σρ, aρ). For u ∈ Ter(Γ;A) we define [u] = (idΓ, u) : Γ→ Γ.A.

The basic type formers are interpreted as follows. For A ∈ Ty(Γ) and B ∈
Ty(Γ.A) define ΣΓ(A,B) ∈ Ty(Γ) by letting ΣΓ(A,B)ρ contain all pairs (u, v)
where u ∈ Aρ and v ∈ B(ρ, v); restrictions are defined as (u, v)f = (uf, vf).
Given w ∈ Ter(Γ; Σ(A,B)) we get w.1 ∈ Ter(Γ;A) and w.2 ∈ Ter(Γ;B[w.1])
by (w.1)ρ = p(wρ) and (w.2)ρ = q(wρ) where p(u, v) = u and q(u, v) = v are
the set-theoretic projections.

Given A ∈ Ty(Γ) and B ∈ Ty(Γ.A) the dependent function space ΠΓ(A,B)
in Ty(Γ) is defined by letting ΠΓ(A,B)ρ for ρ ∈ Γ(I) contain all families
w = (wf | J ∈ C, f : J → I) where

wf ∈
∏

u∈A(ρf)

B(ρf, u) such that (wf u)g = wfg(ug) for u ∈ A(ρf), g : K → J.

The restriction by f : J → I of such a w is defined by (wf)g = wfg. Given v ∈
Ter(Γ.A;B) we have λΓ;Av ∈ Ter(Γ; Π(A,B)) given by ((λv)ρ)f u = v(ρf, u).
Application app(w, u) ∈ Ter(Γ;B[u]) of w ∈ Ter(Γ; Π(A,B)) to u ∈ Ter(Γ;A)
is defined by

app(w, u)ρ = (wρ)idI
(uρ) ∈ (B[u])ρ. (6.2)

Basic data types like the natural numbers can be interpreted as discrete
presheaves, i.e., N ∈ Ty(Γ) is given by Nρ = N; the constants are interpreted
by the lifts of the corresponding set-theoretic operations on N. This concludes
the outline of the basic CwF structure on cubical sets.

6.8. Semantics 107

Remark 6.8.2. Following Aczel [3] we will make use of that our semantic entities
are actual sets in the ambient set theory. This will allow us to interpret
syntax in Section 6.8.3 with fewer type annotations than are usually needed
for general categorical semantics of type theory (see [75]). E.g., the definition
of application app(w, u)ρ as defined in (6.2) is independent of Γ, A and B,
since set-theoretic application is a (class) operation on all sets. Likewise, we
don’t need annotations for first and second projections. But note that we will
need the type A for λ-abstraction for (λΓ;Av)ρ to be a set by the replacement
axiom.

Semantic Path Types

Note that we can consider any cubical set X as X ′ ∈ Ty(Γ) by setting X ′ρ =
X(I) for ρ ∈ Γ(I). We will usually simply write X for X ′. In particular, for a
cubical set Γ we can form the cubical set Γ.I.

For A ∈ Ty(Γ) and u, v ∈ Ter(Γ;A) the semantic path type PathΓ
A(u, v) ∈

Ty(Γ) is given by: for ρ ∈ Γ(I), PathA(u, v)ρ consists of equivalence classes
〈i〉 w where i /∈ I, w ∈ A(ρsi) such that w(i0) = uρ and w(i1) = vρ; two
such elements 〈i〉 w and 〈j〉 w′ are equal iff w(i/j) = w′. Here si : I, i →
I is induced by the inclusion I ⊆ I, i and (i/j) setting i to j. We define
(〈i〉 w)f = 〈j〉 w(f, i/j) for f : J → I and j /∈ J . For r ∈ I(I) we set
(〈i〉 w) r = w(i/r). Both operations, name abstraction and application, lift
to terms, i.e., if w ∈ Ter(Γ.I;A), then 〈 〉w ∈ Ter(Γ; PathA(w[0], w[1])) given
by (〈 〉w)ρ = 〈i〉 w(ρsi) for a fresh i; also if u ∈ Ter(Γ; PathA(a, b)) and r ∈
Ter(Γ; I), then u r ∈ Ter(Γ;A) defined as (u r)ρ = (uρ) (rρ).

Composition Structure

For ϕ ∈ Ter(Γ;F) we define the cubical set Γ, ϕ by taking ρ ∈ (Γ, ϕ)(I) iff ρ ∈
Γ(I) and ϕρ = 1F ∈ F; the restrictions are those induced by Γ. In particular,
we have Γ, 1 = Γ and Γ, 0 is the empty cubical set. (Here, 0 ∈ Ter(Γ;F)
is 0ρ = 0F and similarly for 1F.) Any σ : ∆ → Γ gives rise to a morphism
∆, ϕσ → Γ, ϕ which we also will denote by σ.

If A ∈ Ty(Γ) and ϕ ∈ Ter(Γ;F), we define a partial element of A ∈ Ty(Γ) of
extent ϕ to be an element of Ter(Γ, ϕ;Aιϕ) where ιϕ : Γ, ϕ ↪→ Γ is the inclusion.
So, such a partial element u is given by a family of elements uρ ∈ Aρ for each
ρ ∈ Γ(I) such that ϕρ = 1, satisfying (uρ)f = u(ρf) whenever f : J → I.
Each u ∈ Ter(Γ;A) gives rise to the partial element uι ∈ Ter(Γ, ϕ;Aι); a
partial element is extensible if it is induced by such an element of Ter(Γ;A).

For the next definition note that if A ∈ Ty(Γ), then ρ ∈ Γ(I) corresponds
to ρ : y I → Γ and thus Aρ ∈ Ty(y I); also, any ϕ ∈ F(I) corresponds to
ϕ ∈ Ter(y I;F).

Definition 6.8.3. A composition structure for A ∈ Ty(Γ) is given by the fol-
lowing operations. For each I, i /∈ I, ρ ∈ Γ(I, i), ϕ ∈ F(I), u a partial element
of Aρ of extent ϕ, and a0 ∈ Aρ(i0) with a0f = u(i0)f for all f : J → I with

108 Chapter 6. Cubical Type Theory

ϕf = 1F (i.e., a0ιϕ = u(i0) if a0 is considered as element of Ter(y I;Aρ(i0))),
we require

comp(I, i, ρ, ϕ, u, a0) ∈ Aρ(i1)

such that for any f : J → I and j /∈ J ,

(comp(I, i, ρ, ϕ, u, a0))f = comp(J, j, ρ(f, i = j), ϕf, u(f, i = j), a0f),

and comp(I, i, ρ, 1F, u, a0) = u(i1).

A type A ∈ Ty(Γ) together with a composition structure comp on A is
called a fibrant type, written (A, comp) ∈ FTy(Γ). We will usually simply
write A ∈ FTy(Γ) and compA for its composition structure. But observe that
A ∈ Ty(Γ) can have different composition structures. Call a cubical set Γ
fibrant if it is a fibrant type when Γ considered as type Γ ∈ Ty(>) is fibrant
where > is a terminal cubical set. A prime example of a fibrant cubical set is
the singular cubical set of a topological space (see Appendix 6.C).

Theorem 6.8.4. The CwF on cubical sets supporting dependent products, de-
pendent sums, and natural numbers described above can be extended to fibrant
types.

Proof. For example, if A ∈ FTy(Γ) and σ : ∆→ Γ, we set

compAσ(I, i, ρ, ϕ, u, a0) = compA(I, i, σρ, ϕ, u, a0)

as the composition structure on Aσ in FTy(∆). Type formers are treated
analogously to their syntactic counterpart given in Section 6.4. Note that one
also has to check that all equations between types are also preserved by their
associated composition structures.

Note that we can also, like in the syntax, define a composition structure
on PathA(u, v) given that A has one.

Semantic Glueing

Next we will give a semantic counterpart to the Glue construction. To define
the semantic glueing as an element of Ty(Γ) it is not necessary that the given
types have composition structures or that the functions are equivalences; this
is only needed later to give the composition structure. Assume ϕ ∈ Ter(Γ;F),
T ∈ Ty(Γ, ϕ), A ∈ Ty(Γ), and w ∈ Ter(Γ, ϕ;T → Aι) (where A → B is
Π(A,Bp)).

Definition 6.8.5. The semantic glueing GlueΓ(ϕ, T,A,w) ∈ Ty(Γ) is defined
as follows. For ρ ∈ Γ(I), we let u ∈ Glue(ϕ, T,A,w)ρ iff either

• u ∈ Tρ and ϕρ = 1F; or

• u = glue(ϕρ, t, a) and ϕρ 6= 1F, where t ∈ Ter(y I, ϕρ;Tρ) and a ∈
Ter(y I;Aρ) such that app(wρ, t) = aι ∈ Ter(y I, ϕρ;Aρι).

6.8. Semantics 109

For f : J → I we define the restriction uf of u ∈ Glue(ϕ, T,A,w) to be given
by the restriction of Tρ in the first case; in the second case, i.e., if ϕρ 6= 1F,
we let uf = glue(ϕρ, t, a)f = tf ∈ Tρf in case ϕρf = 1F, and otherwise
uf = glue(ϕρf, tf, af).

Here glue was defined as a constructor; we extend glue to any t in
Ter(y I;Tρ), a in Ter(y I;Aρ) such that app(wρ, t) = a (so if ϕρ = 1F) by
glue(1F, t, a) = tidI

. This way any element of Glue(ϕ, T,A,w)ρ is of the form
glue(ϕρ, t, a) for suitable t and a, and restriction is given by

(glue(ϕρ, t, a))f = glue(ϕρf, tf, af).

Note that we get

GlueΓ(1F, T, A,w) = T and
(GlueΓ(ϕ, T,A,w))σ = Glue∆(ϕσ, Tσ,Aσ,wσ)

(6.3)

for σ : ∆→ Γ. We define unglue(ϕ,w) ∈ Ter(Γ. Glue(ϕ, T,A,w);Ap) by

unglue(ϕ,w)(ρ, t) = app(wρ, t)idI
∈ Aρ whenever ϕρ = 1F, and

unglue(ϕ,w)(ρ, glue(ϕ, t, a)) = a otherwise,

where ρ ∈ Γ(I).

Definition 6.8.6. For A,B ∈ Ty(Γ) and w ∈ Ter(Γ;A → B) an equivalence
structure for w is given by the following operations such that for each

• ρ ∈ Γ(I),

• ϕ ∈ F(I),

• b ∈ Bρ, and

• partial elements a of Aρ and ω of PathB(app(wρ, a), bι)ρ with extent ϕ,

we are given

• e0(ρ, ϕ, b, a, ω) ∈ Aρ, and

• a path e1(ρ, ϕ, b, a, ω) between app(wρ, e0(ρ, ϕ, b, a, ω)) and b

such that e0(ρ, ϕ, b, a, ω)ι = a, e1(ρ, ϕ, b, a, ω)ι = ω (where ι : y I, ϕ → y I)
and for any f : J → I and ν = 0, 1:

(eν(ρ, ϕ, b, a, ω))f = eν(ρf, ϕf, bf, af, ωf).

Following the argument in the syntax we can use the equivalence structure
to explain a composition for Glue.

Theorem 6.8.7. If A ∈ FTy(Γ), T ∈ FTy(Γ, ϕ), and we have an equivalence
structure for w, then we have a composition structure for Glue(ϕ, T,A,w) such
that the equations (6.3) also hold for the respective composition structures.

110 Chapter 6. Cubical Type Theory

Semantic Universes

Assuming a Grothendieck universe of small sets in our ambient set theory, we
can define A ∈ Ty0(Γ) iff all Aρ are small for ρ ∈ Γ(I); and A ∈ FTy0(Γ) iff
A ∈ Ty0(Γ) when forgetting the composition structure of A.

Definition 6.8.8. The semantic universe U is the cubical set defined by U(I) =
FTy0(y I); restriction along f : J → I is simply substitution along y f .

We can consider U as an element of Ty(Γ). As such we can, as in the syn-
tactic counterpart, define a composition structure on U using semantic glueing,
so that U ∈ FTy(Γ). Note that semantic glueing preserves smallness.

For T ∈ Ter(Γ; U) we can define decoding ElT ∈ FTy0(Γ) by (ElT)ρ =
(Tρ) idI and likewise for the composition structure. For A ∈ FTy0(Γ) we get
its code pAq ∈ Ter(Γ; U) by setting pAqρ ∈ FTy0(y I) to be given by the
sets (pAqρ)f = A(ρf) and likewise for restrictions and composition structure.
These operations satisfy ElpAq = A and pElTq = T .

6.8.3 Interpretation of the Syntax
Following [75] we define a partial interpretation function from raw syntax to
the CwF with fibrant types given in the previous section.

To interpret the universe rules à la Russell we assume two Grothendieck
universes in the underlying set theory, say tiny and small sets. So that any
tiny set is small, and the set of tiny sets is small. For a cubical set X we
define FTy0(X) and FTy1(X) as in the previous section, now referring to tiny
and small sets, respectively. We get semantic universes Ui(I) = FTyi(y I)
for i = 0, 1; we identify those with their lifts to types. As noted above,
these lifts carry a composition structure, and thus are fibrant. We also have
U0 ⊆ U1 and thus Ter(X; U0) ⊆ Ter(X; U1). Note that coding and decoding
are, as set-theoretic operations, the same for both universes. We get that
pU0q ∈ Ter(X; U1) which will serve as the interpretation of U.

In what follows, we define a partial interpretation function of raw syntax:
[[Γ]], [[Γ; t]], and [[∆;σ]] by recursion on the raw syntax. Since we want to
interpret a universe à la Russell we cannot assume terms and types to have
different syntactic categories. The definition is given below and should be
read such that the interpretation is defined whenever all interpretations on
the right-hand sides are defined and make sense; so, e.g., for [[Γ]].El [[Γ;A]]
below, we require that [[Γ]] is defined and a cubical set, [[Γ;A]] is defined, and
El [[Γ;A]] ∈ FTy([[Γ]]). The interpretation for raw contexts is given by:

[[()]] = > [[Γ, x : A]] = [[Γ]].El [[Γ;A]] if x /∈ dom(Γ)
[[Γ, ϕ]] = [[Γ]], [[Γ;ϕ]] [[Γ, i : I]] = [[Γ]].I if i /∈ dom(Γ)

where > is a terminal cubical set and in the last equation I is considered as an
element of Ty([[Γ]]). When defining [[Γ; t]] we require that [[Γ]] is defined and
a cubical set; then [[Γ; t]] is a (partial) family of sets [[Γ; t]](I, ρ) for I ∈ C and

6.8. Semantics 111

ρ ∈ [[Γ]](I) (leaving I implicit in the definition). We define:

[[Γ; U]] = pU0q ∈ Ter([[Γ]]; U1)
[[Γ; N]] = pNq ∈ Ter([[Γ]]; U0)

[[Γ; (x : A)→ B]] = pΠ[[Γ]](El [[Γ;A]],El [[Γ, x : A;B]])q
[[Γ; (x : A)×B]] = pΣ[[Γ]](El [[Γ;A]],El [[Γ, x : A;B]])q

[[Γ; Path A a b]] = pPath[[Γ]]
El [[Γ;A]]([[Γ; a]], [[Γ; b]])q

[[Γ; Glue [ϕ 7→ (T, f)] A]] = pGlue[[Γ]]([[Γ;ϕ]],El [[Γ, ϕ;T]],El [[Γ;A]], [[Γ, ϕ; f]])q
[[Γ;λx : A.t]] = λ[[Γ]];El [[Γ;A]]([[Γ, x : A; t]])

[[Γ; t u]] = app([[Γ; t]], [[Γ;u]])
[[Γ; 〈i〉 t]] = 〈 〉[[Γ]][[Γ, i : I; t]]

[[Γ; t r]] = [[Γ; t]][[Γ; r]]

where for path application, juxtaposition on the right-hand side is semantic
path application. In the case of a bound variable, we assume that x (respec-
tively i) is a chosen variable fresh for Γ; if this is not possible the expression
is undefined. Moreover, all type formers should be read as those on fibrant
types, i.e., also defining the composition structure. In the case of Glue, it is
understood that the function part, i.e., the fourth argument of Glue in Def-
inition 6.8.5 is p ◦ [[Γ, ϕ; f]] and the required (by Theorem 6.8.7) equivalence
structure is to be extracted from q ◦ [[Γ, ϕ; f]] as in Section 6.5.3. In virtue
of the remark in Section 6.8.2 we don’t need type annotations to interpret
applications. Note that coding and decoding tacitly refer to [[Γ]] as well. For
the rest of the raw terms we also assume we are given ρ ∈ [[Γ]](I). Variables
are interpreted by:

[[Γ, x : A;x]]ρ = q(ρ) [[Γ, x : A; y]]ρ = [[Γ; y]](p(ρ)) [[Γ, ϕ; y]]ρ = [[Γ; y]]ρ

These should also be read to include the case when x or y are name variables;
if x is a name variable, we require A to be I. The interpretations of [[Γ; r]]ρ
where r is not a name and [[Γ;ϕ]]ρ follow inductively as elements of I and F,
respectively.

Constants for dependent sums are interpreted by:

[[Γ; (t, u)]]ρ = ([[Γ; t]]ρ, [[Γ;u]]ρ) [[Γ; t.1]]ρ = p([[Γ; t]]ρ) [[Γ; t.2]]ρ = q([[Γ; t]]ρ)

Likewise, constants for N will be interpreted by their semantic analogues (omit-
ted). The interpretations for the constants related to glueing are

[[Γ; glue [ϕ 7→ t]u]]ρ = glue([[Γ;ϕ]]ρ, [[Γ, ϕ; t]]ρ̂, [[Γ;u]]ρ)
[[Γ; unglue [ϕ 7→ f]u]]ρ = unglue([[Γ;ϕ]], p ◦ [[Γ; f]])(ρ, [[Γ;u]]ρ)

where [[Γ, ϕ; t]]ρ̂ is the family assigning [[Γ, ϕ; t]](ρf) to J ∈ C and f : J → I
(and ρf refers to the restriction given by [[Γ]] which is assumed to be a cubical
set). Partial elements are interpreted by

[[Γ; [ϕ1 u1, . . . , ϕn un]]]ρ = [[Γ, ϕi;ui]]ρ if [[Γ;ϕi]]ρ = 1F,

112 Chapter 6. Cubical Type Theory

where for this to be defined we additionally assume that all [[Γ, ϕi;ui]] are
defined and [[Γ, ϕi;ui]]ρ′ = [[Γ, ϕj ;uj]]ρ′ for each ρ′ ∈ [[Γ]](I) with [[Γ;ϕi ∧
ϕj]]ρ′ = 1F.

Finally, the interpretation of composition is given by

[[Γ; compi A [ϕ 7→ u] a0]]ρ =
compEl [[Γ,i:I;A]](I, j, ρ′, [[Γ;ϕ]]ρ, [[Γ, ϕ, i : I;u]]ρ′, [[Γ; a0]]ρ)

if i /∈ dom(Γ), and where j is fresh and ρ′ = (ρsj , i = j) with sj : I, j → I
induced from the inclusion I ⊆ I, j.

The interpretation of raw substitutions [[∆;σ]] is a (partial) family of sets
[[∆;σ]](I, ρ) for I ∈ C and ρ ∈ [[∆]](I). We set

[[∆; ()]]ρ = ∗, [[∆; (σ, x/t)]]ρ = ([[∆;σ]]ρ, [[∆; t]]ρ) if x /∈ dom(σ),

where ∗ is the unique element of >(I). This concludes the definition of the
interpretation of syntax.

In the following α stands for either a raw term or raw substitution. In the
latter case, ασ denotes composition of substitutions.

Lemma 6.8.9. Let Γ′ be like Γ but with some ϕ’s inserted, and assume both
[[Γ]] and [[Γ′]] are defined; then:

1. [[Γ′]] is a sub-cubical set of [[Γ]];

2. if [[Γ;α]] is defined, then so is [[Γ′;α]] and they agree on [[Γ′]].

Lemma 6.8.10 (Weakening). Let [[Γ]] be defined.

1. If [[Γ, x : A,∆]] is defined, then so is [[Γ, x : A,∆;x]] which is moreover
the projection to the x-part.5

2. If [[Γ,∆]] is defined, then so is [[Γ,∆; idΓ]] which is moreover the projection
to the Γ-part.

3. If [[Γ,∆]], [[Γ;α]] are defined and the variables in ∆ are fresh for α, then
[[Γ,∆;α]] is defined and for ρ ∈ [[Γ,∆]](I):

[[Γ;α]]([[Γ,∆; idΓ]]ρ) = [[Γ,∆;α]]ρ

Lemma 6.8.11 (Substitution). For [[Γ]],[[∆]], [[∆;σ]], and [[Γ;α]] defined with
dom(Γ) = dom(σ) (as lists), also [[∆;ασ]] is defined and for ρ ∈ [[∆]](I):

[[Γ;α]]([[∆;σ]]ρ) = [[∆;ασ]]ρ

Lemma 6.8.12. If [[Γ]] is defined and a cubical set, and [[Γ;α]] is defined, then
([[Γ;α]]ρ)f = [[Γ;α]](ρf).

5E.g., if Γ is y : B, z : C, the projection to the x-part maps (b, (c, (a, δ))) to a, and the
projection to the Γ-part maps (b, (c, δ)) to (b, c).

6.9. Extensions: Identity Types and Higher Inductive Types 113

To state the next theorem let us set [[Γ; I]] = pIq and [[Γ;F]] = pFq as
elements of Ty0([[Γ]]).

Theorem 6.8.13 (Soundness). We have the following implications, and all
occurrences of [[−]] in the conclusions are defined. In (3) and (5) we allow A
to be I or F.

1. if Γ ` , then [[Γ]] is a cubical set;

2. if Γ ` A, then [[Γ;A]] ∈ Ter([[Γ]]; U1);

3. if Γ ` t : A, then [[Γ; t]] ∈ Ter([[Γ]]; El [[Γ;A]]);

4. if Γ ` A = B, then [[Γ;A]] = [[Γ;B]];

5. if Γ ` a = b : A, then [[Γ; a]] = [[Γ; b]];

6. if Γ ` σ : ∆, then [[Γ;σ]] restricts to a natural transformation [[Γ]]→ [[∆]].

6.9 Extensions: Identity Types and Higher In-
ductive Types

In this section we consider possible extensions to cubical type theory. The first
is an identity type defined using path types whose elimination principle holds
as a judgmental equality. The second are two examples of higher inductive
types.

6.9.1 Identity Types
We can use the path type to represent equalities. Using the composition
operation, we can indeed build a substitution function P (a)→ P (b) from any
path between a and b. However, since we don’t have in general the judgmental
equality transpi A a0 = a0 if A is independent of i (which is an equality that
we cannot expect geometrically in general, as shown in Appendix 6.C), this
substitution function does not need to be the constant function when the path
is constant. This means that, as in the previous model [15, 50], we don’t get an
interpretation of Martin-Löf identity type [59] with the standard judgmental
equalities.

However, we can define another type which does give an interpretation of
this identity type following an idea of Andrew Swan.

Identity Types

The basic idea of Id A a0 a1 is to define it in terms of Path A a0 a1 but also
mark the paths where they are known to be constant. Formally, the formation
and introduction rules are

Γ ` A Γ ` a0 : A Γ ` a1 : A
Γ ` Id A a0 a1

Γ ` ω : Path A a0 a1[ϕ 7→ 〈i〉 a0]
Γ ` (ω, ϕ) : Id A a0 a1

114 Chapter 6. Cubical Type Theory

and we can define r a = (1a, 1F) : Id A a a for a : A. The elimination rule,
given Γ ` a : A, is

Γ, x : A,α : Id A a x ` C
Γ ` d : C(x/a, α/ r a) Γ ` b : A Γ ` β : Id A a b

Γ ` Jx,α.C d b β : C(x/b, α/β)

together with the following judgmental equality in case β is of the form (ω, ϕ)

J d b β = compi C(x/ω i, α/β∗(i)) [ϕ 7→ d] d

where Γ, i : I ` β∗(i) : Id A a (ω i) is given by

β∗(i) = (〈j〉 ω (i ∧ j), ϕ ∨ (i = 0)).

Note that with this definition we get J d a (r a) = d as desired.
The composition operation for Id is explained as follows. Given

Γ, i : I ` Id A a0 a1,Γ, ϕ, i : I ` (ω, ψ) : Id A a0 a1, and
Γ ` (ω0, ψ0) : (Id A a0 a1)(i0)[ϕ 7→ (ω(i0), ψ(i0))]

we have the judgmental equality

compi (Id A a0 a1) [ϕ 7→ (ω, ψ)] (ω0, ψ0) =
(compi (Path A a0 a1) [ϕ 7→ ω] ω0, ϕ ∧ ψ(i1)).

It can then be shown that the types Id A a b and Path A a b are (Path)-
equivalent. In particular, a type is (Path)-contractible if, and only if, it is
(Id)-contractible. The univalence axiom, proved in Section 6.7.2 for the Path-
type, hence holds as well for the Id-type.6

Cofibration-Trivial Fibration Factorization

The same idea can be used to factorize an arbitrary map of (not necessary
fibrant) cubical sets f : A→ B into a cofibration followed by a trivial fibration.
We define a “trivial fibration” to be a first projection from a total space of a
contractible family of types and a “cofibration” to be a map that has the left
lifting property against any trivial fibration. For this we define, for b : B,
the type Tf (b) to be the type of elements [ϕ 7→ a] with ϕ ` a : A and
ϕ ` f a = b : B.

Theorem 6.9.1. The type Tf (b) is contractible and the map

A→ (b : B)× Tf (b), a 7−→ (f a, [1F 7→ a])

is a cofibration.

The definition of the identity type can be seen as a special case of this, if
we take the B the type of paths in A and for f the constant path function.

6This has been formally verified using the Haskell implementation:
https://github.com/mortberg/cubicaltt/blob/v1.0/examples/idtypes.ctt

https://github.com/mortberg/cubicaltt/blob/v1.0/examples/idtypes.ctt

6.9. Extensions: Identity Types and Higher Inductive Types 115

6.9.2 Higher Inductive Types

In this section we consider the extension of cubical type theory with two dif-
ferent higher inductive types: spheres and propositional truncation. The pre-
sentation in this section is syntactical, but it can be directly translated into
semantic definitions.

Extension to Dependent Path Types

In order to formulate the elimination rules for higher inductive types, we need
to extend the path type to dependent path type, which is described by the
following rules. If i : I ` A and ` a0 : A(i0), a1 : A(i1), then ` Pathi A a0 a1.
The introduction rule is that ` 〈i〉 t : Pathi A t(i0) t(i1) if i : I ` t : A.
The elimination rule is ` p r : A(i/r) if ` p : Pathi A a0 a1 with equalities
p 0 = a0 : A(i0) and p 1 = a1 : A(i1).

Spheres

We define the circle, S1, by the rules:

Γ `
Γ ` S1

Γ `
Γ ` base : S1

Γ ` r : I
Γ ` loop(r) : S1

with the equalities loop(0) = loop(1) = base.
Since we want to represent the free type with one base point and a loop,

we add composition as a constructor operation hcompi:

Γ, ϕ, i : I ` u : S1 Γ ` u0 : S1[ϕ 7→ u(i0)]
Γ ` hcompi [ϕ 7→ u] u0 : S1

with the equality hcompi [1F 7→ u] u0 = u(i1).
Given a dependent type x : S1 ` A and a : A(x/base) and a path l :

Pathi A(x/loop(i)) a a we can define a function g : (x : S1) → A by the
equations7 g base = a and g loop(r) = l r and

g (hcompi [ϕ 7→ u] u0) = compi A(x/v) [ϕ 7→ g u] (g u0)

where v = filli S1 [ϕ 7→ u] u0 = hcompj [ϕ 7→ u(i/i ∧ j), (i = 0) 7→ u0] u0.
This definition is non ambiguous since l 0 = l 1 = a.

We have a similar definition for the n-sphere, Sn, taking as constructors
base and loop(r1, . . . , rn).

7For the equation g loop(r) = l r, it may be that l and r are dependent on the same
name i, and we could not have followed this definition in the framework of [15].

116 Chapter 6. Cubical Type Theory

Propositional Truncation

We define the propositional truncation, inh A, of a type A by the rules:

Γ ` A
Γ ` inh A

Γ ` a : A
Γ ` inc a : inh A

Γ ` u0 : inh A Γ ` u1 : inh A Γ ` r : I
Γ ` squash(u0, u1, r) : inh A

with the equalities squash(u0, u1, 0) = u0 and squash(u0, u1, 1) = u1.
As before, we add composition as a constructor, but only in the form8

Γ, ϕ, i : I ` u : inh A Γ ` u0 : inh A[ϕ 7→ u(i0)]
Γ ` hcompi [ϕ 7→ u] u0 : inh A

with the equality hcompi [1F 7→ u] u0 = u(i1).
This provides only a definition of compi (inh A) [ϕ 7→ u] u0 in the case

where A is independent of i, and we have to explain how to define the general
case.

In order to do this, we define first two operations

Γ, i : I ` A Γ ` u0 : inh A(i0)
Γ ` transp u0 : inh A(i1)

Γ, i : I ` A Γ, i : I ` u : inh A
Γ ` squeezei u : Path (inh A(i1)) (transp u(i0)) u(i1)

by the equations

transp (inc a) = inc (compi A [] a)
transp (squash(u0, u1, r)) = squash(transp u0, transp u1, r)
transp (hcompj [ϕ 7→ u] u0) = hcompj [ϕ 7→ transp u] (transp u0)

squeezei (inc a) = 〈i〉 inc (compj A(i ∨ j)
[(i = 1) 7→ a(i1)] a)

squeezei (squash(u0, u1, r)) = 〈k〉 squash(squeezei u0 k, squeezei u1 k,
r(i/k))

squeezei (hcompj [ϕ 7→ u] v) = 〈k〉 hcompj S (squeezei v k)

where S is the system

[δ 7→ squeezei u k, ϕ(i/k)∧ (k = 0) 7→ transp u(i0), ϕ(i/k)∧ (k = 1) 7→ u(i1)]

and δ = ∀i.ϕ, using Lemma 6.4.1.
8This restriction on the constructor is essential for the justification of the elimination

rule below.

6.10. Related and Future Work 117

Using these operations, we can define the general composition

Γ, i : I ` A Γ, ϕ, i : I ` u : inh A Γ ` u0 : inh A(i0)[ϕ 7→ u(i0)]
Γ ` compi (inh A) [ϕ 7→ u] u0 : inh A(i1)[ϕ 7→ u(i1)]

by Γ ` compi (inh A) [ϕ 7→ u] u0 = hcompj [ϕ 7→ squeezei u j] (transp u0) :
inh A(i1).

Given Γ ` B and Γ ` q : (x y : B)→ Path B x y and f : A→ B we define
g : inh A→ B by the equations:

g (inc a) = f a
g (squash(u0, u1, r)) = q (g u0) (g u1) r
g (hcompj [ϕ 7→ u] u0) = compj B [ϕ 7→ g u] (g u0)

6.10 Related and Future Work
Cubical ideas have proved useful to reason about equality in homotopy type
theory [56]. In cubical type theory these techniques could be simplified as there
are new judgmental equalities and better notations for manipulating higher
dimensional cubes. Indeed some simple experiments using the Haskell im-
plementation have shown that we can simplify some constructions in synthetic
homotopy theory.9

Other approaches to extending intensional type theory with extensionality
principles can be found in [4, 72]. These approaches have close connections to
techniques for internalizing parametricity in type theory [13]. Further, nominal
extensions to λ-calculus and semantical ideas related to the ones presented in
this paper have recently also proved useful for justifying type theory with
internalized parametricity [12].

The paper [37] provides a general framework for analyzing the uniformity
condition, which applies to simplicial and cubical sets.

Large parts of the semantics presented in this paper have been formally
verified in NuPrl by Mark Bickford10, in particular, the definition of Kan filling
in terms of composition as in Section 6.4.4 and composition for glueing as given
in Section 6.6.2.

Following the usual reducibility method, we expect it to be possible to
adapt our presheaf semantics to a proof of normalization and decidability of
type checking. A first step in this direction is the proof of canonicity in [51].
We end the paper with a list of open problems and conjectures:

1. Extend the semantics of identity types to the semantics of inductive
families.

2. Give a general syntax and semantics of higher inductive types.
9For details see: https://github.com/mortberg/cubicaltt/tree/master/examples/

10For details see: http://www.nuprl.org/wip/Mathematics/cubical!type!theory/

https://github.com/mortberg/cubicaltt/tree/master/examples/
http://www.nuprl.org/wip/Mathematics/cubical!type!theory/

118 Chapter 6. Cubical Type Theory

3. Extend the system with resizing rules and show normalization.

Acknowledgments. This work originates from discussions between the four au-
thors around an implementation of a type system corresponding to the model
described in [15]. This implementation indicated a problem with the repre-
sentation of higher inductive types, e.g., the elimination rule for the circle,
and suggested the need of extending this cubical model with a diagonal oper-
ation. The general framework (uniformity condition, connections, semantics
of spheres and propositional truncation) is due to the second author. In par-
ticular, the glueing operation with its composition was introduced as a gener-
alization of the operation described in [15] transforming an equivalence into a
path, and with the condition A = Glue [] A. In a first attempt, we tried to
force “regularity”, i.e., the equation transp i A a0 = a0 if A is independent
of i (which seemed to be necessary in order to get filling from compositions,
and which implies Path = Id). There was a problem however for getting reg-
ularity for the universe, that was discovered by Dan Licata (from discussions
with Carlo Angiuli and Bob Harper). Thanks to this discovery, it was realized
that regularity is actually not needed for the model to work. In particular,
the third author noticed that we can remove the condition A = Glue [] A,
and together with the last author, they derived the univalence axiom from
the glueing operation as presented in the appendix. This was surprising since
glueing was introduced a priori only as a way to transform equivalences into
paths, but was later explained by a remark of Dan Licata (also presented in the
appendix: we get univalence as soon as the transport map associated to this
path is path equal to the given equivalence). The second author introduced
then the restriction operation Γ, ϕ on contexts, which, as noticed by Christian
Sattler, can be seen as an explicit syntax for the notion of cofibration, and de-
signed the other proof of univalence in Section 6.7.2 from discussions between
Nicola Gambino, Peter LeFanu Lumsdaine, and the third author. Not having
regularity, the type of paths is not the same as the Id type but, as explained
in Section 6.9.1, we can recover the usual identity type from the path type,
following an idea of Andrew Swan.

The authors would like to thank the referees and Martín Escardó, Georges
Gonthier, Dan Grayson, Peter Hancock, Dan Licata, Peter LeFanu Lumsdaine,
Christian Sattler, Andrew Swan, Vladimir Voevodsky for many interesting
discussions and remarks.

Appendix

6.A Details of Composition for Glueing
We build the element Γ ` b1 = compi B [ψ 7→ b] b0 : (Glue [ϕ 7→ (T, f)] A)(i1)
as the element glue [ϕ(i1) 7→ t1] a1 where:

Γ, ϕ(i1) ` t1 : T (i1)[ψ 7→ b(i1)]
Γ ` a1 : A(i1)[ϕ(i1) 7→ f(i1) t1, ψ 7→ (unglue b)(i1)]

As intermediate steps, we gradually build elements that satisfy more and
more of the equations that the final elements t1 and a1 should satisfy. The
construction of these is given in five steps.

Before explaining how we can define them and why they are well defined,
we illustrate the construction in Figure 6.6, with ψ = (j = 1) and ϕ = (i =
0) ∨ (j = 1) ∨ (i = 1).

We pose δ = ∀i.ϕ (cf. Section 6.3), so that we have that δ is independent
from i, and in our example δ = (j = 1) and it represents the right-hand side
of the picture.

1. The element a′1 : A(i1) is a first approximation of a1, but a′1 is not
necessarily in the image of f(i1) in Γ, ϕ(i1);

2. the partial element δ ` t′1 : T (i1), which is a partial final result for ϕ(i1) `
t1;

3. the partial path δ ` ω, between a′1 and the image of t′1;

4. both the final element ϕ(i1) ` t1 and a path ϕ(i1) ` α between a′1 and
f(i1) t1;

5. finally, we build a1 from a′1 and α.

We define:

Γ, ψ, i : I ` a = unglue b : A[ϕ 7→ f b]
Γ ` a0 = unglue b0 : A(i0)[ϕ(i0) 7→ f(i0) b0, ψ 7→ a(i0)]

120 Chapter 6. Cubical Type Theory

unglue b0

Step 5: a1

Step 1: a′1

f

f

f

f

ϕ(i0) ` b0

Step 4: ϕ(i1) ` t1

f

i

j
(unglue b)(j1)

Step 2: δ ` t′1

δ ` f(i1) t′1

b(j1)

Step 3: δ ` ω constant on ψStep 4’: ϕ(i1) ` α

Figure 6.6: Composition for glueing

Step 1 We define a′1 as the composition of a and unglue b0, in the direc-
tion i,

Γ ` a′1 = compi A [ψ 7→ a] a0 : A(i1)[ψ 7→ a(i1)] (6.4)

which is well defined since unglue b0 = (unglue b)(i0) over the extent ψ.

Step 2 We also define t′1 as the composition of b and b0, in the direction i:

Γ, δ ` t′1 = compi T [ψ 7→ b] b0 : T (i1)[ψ 7→ b(i1)] (6.5)

which is well defined because{
Γ, δ, i : I, ψ ` b : T by Lemma 6.4.2,
Γ, δ ` b0 : T (i0)[ψ 7→ b(i0)] as δ 6 ϕ(i0).

Moreover, since {
Γ, δ, ψ, i : I ` a = f b by δ 6 ϕ,
Γ, δ ` a0 = f(i0) b0 by δ 6 ϕ(i0),

we can re-express a′1 on the extent δ:

Γ, δ ` a′1 = compi A [ψ 7→ f b] (f(i0) b0)

6.A. Details of Composition for Glueing 121

Step 3 We can hence find a path ω connecting a′1 and f(i1) t′1 in Γ, δ
using Lemma 6.5.2:

Γ, δ ` ω = presi f [ψ 7→ b] b0 : (Path A(i1) a′1 (f(i1) t′1)) [ψ 7→ 〈j〉 a(i1)]

Picking a fresh name j, we have

Γ, δ, j : I ` ω j : A(i1)[(j0) 7→ a′1, (j1) 7→ f(i1) t′1, ψ 7→ a(i1)]. (6.6)

Step 4 Now we define the final element t1 as the inverse image of a′1
by f(i1), together with the path α between a′1 and f(i1) t1, in Γ, ϕ(i1) `,
using Lemma 6.5.3:

Γ, ϕ(i1) ` (t1, α) = equiv f(i1) [δ 7→ (t′1, ω), ψ 7→ (b(i1), 〈j〉 a′1)] a′1

with {
Γ, ϕ(i1) ` t1 : T (i1)[δ 7→ t′1, ψ 7→ b(i1)],
Γ, ϕ(i1) ` α : (Path A(i1) a′1 (f(i1) t1)) [δ 7→ ω, ψ 7→ 〈j〉 a′1)].

These are well defined because the two systems in δ and ψ are compatible:{
Γ, δ, ψ ` t′1 = b(i1) by (6.5),
Γ, δ, ψ ` ω = 〈j〉 a′1 by (6.6) and (6.4).

Picking a fresh name j, we have:

Γ, ϕ(i1), j : I ` α j : A(i1)[(j = 0) 7→ a′1, (j = 1) 7→ f(i1) t1,
δ 7→ a′1, ψ 7→ a(i1)]

(6.7)

Step 5 Finally, we define a1 by composition of α and a′1:

Γ ` a1 := compj A(i1) [ϕ(i1) 7→ α j, ψ 7→ a(i1)] a′1 :
A(i1)[ϕ(i1) 7→ α 1, ψ 7→ a(i1)]

which is well defined because
Γ, j : I, ϕ(i1), ψ ` α j = a(i1) by (6.7),
Γ, ϕ(i1) ` α 0 = a′1 by (6.7),
Γ, ψ ` a(i1) = a′1 by (6.4),

and since Γ, ϕ(i1) ` α 1 = f(i1) t1, we can re-express the type of a1 in the
following way:

Γ ` a1 : A(i1)[ϕ(i1) 7→ f(i1) t1, ψ 7→ a(i1)]

Which is exactly what we needed to build Γ ` b1 := glue [ϕ(i1) 7→ t1] a1 :
B(i1)[ψ 7→ b(i1)].

122 Chapter 6. Cubical Type Theory

Finally we check that b1 = compi T [ψ 7→ b] b0 on δ:

b1 = glue [ϕ(i1) 7→ t1] a1 by def.
= t1 : T (i1)[δ 7→ t′1, ψ 7→ b(i1)] as ϕ(i1) = 1F
= t′1 as δ = 1F
= compi T [ψ 7→ b] b0 by def.

6.B Univalence from Glueing
We also give two alternative proofs of the univalence axiom for Path only in-
volving the glue construction.11 The first is a direct proof of the standard
formulation of the univalence axiom while the second goes through an alter-
native formulation as in Corollary 6.7.3.12

Lemma 6.B.1. For Γ ` A : U, Γ ` B : U, and an equivalence Γ ` f :
Equiv A B we have the following constructions:

1. Γ ` eqToPath f : Path UAB;

2. Γ ` Path (A→ B) (transpi(eqToPath f i))) f.1 is inhabited; and

3. if f = equivi(P i) for Γ ` P : Path UAB, then the following type is
inhabited:

Γ ` Path (Path UAB) (eqToPath (equivi(P i)))P

Proof. For (1) we define

eqToPath f = 〈i〉 Glue [(i = 0) 7→ (A, f), (i = 1) 7→ (B, equivkB)]B. (6.8)

Note that here equivkB is an equivalence between B and B (see Section 6.7.1).
For (2) we have to closely look at how the composition was defined for Glue.
By unfolding the definition, we see that the left-hand side of the equality is
equal f.1 composed with multiple transports in a constant type; using filling
and functional extensionality, these transports can be shown to be equal to
the identity; for details see the formal proof.

The term for (3) is given by:

〈j〉 〈i〉 Glue [(i = 0) 7→ (A, equivk(P k)),
(i = 1) 7→ (B, equivkB),
(j = 1) 7→ (P i, equivk(P (i ∨ k)))]
B

11The proofs of the univalence axiom have all been formally verified inside the system using
the Haskell implementation. We note that the proof of Theorem 6.7.2 can be given such
that it extends f.2 and hence in Corollary 6.7.3 we don’t need the fact that isEquiv X A f.1
is a proposition. For details see: https://github.com/mortberg/cubicaltt/blob/v1.0/
examples/univalence.ctt

12The second of these proofs is inspired by a proof by Dan Licata from:
https://groups.google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ

https://github.com/mortberg/cubicaltt/blob/v1.0/examples/univalence.ctt
https://github.com/mortberg/cubicaltt/blob/v1.0/examples/univalence.ctt
https://groups.google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ

6.C. Singular Cubical Sets 123

Corollary 6.B.2 (Univalence axiom). For the canonical map

pathToEq : (AB : U)→ Path UAB → Equiv A B

we have that pathToEqAB is an equivalence for all A : U and B : U.

Proof 1. Let us first show that the canonical map pathToEq is path equal to:

equiv = λAB : U. λP : Path UAB. equivi(P i)

By function extensionality, it suffices to check this pointwise. Using path-
induction, we may assume that P is reflexivity. In this case pathToEqAA 1A
is the identity equivalence by definition. Because being an equivalence is a
proposition, it thus suffices that the first component of equiviA is proposi-
tionally equal to the identity. By definition, this first component is given by
transport (now in the constant type A) which is easily seen to be the identity
using filling (see Section 6.4.4).

Thus it suffices to prove that equivAB is an equivalence. To do so it is
enough to give an inverse (see Theorems 4.2.3 and 4.2.6 of [79]). But eqToPath
is a left inverse by Lemma 6.B.1 (3), and a right inverse by Lemma 6.B.1 (2)
using that being an equivalence is a proposition.

Proof 2. Points (1) and (2) of Lemma 6.B.1 imply that Equiv A B is a retract
of Path UAB. Hence (X : U)×Equiv A X is a retract of (X : U)×Path UAX.
But (X : U) × Path UAX is contractible, so (X : U) × Equiv A X is also
contractible as a retract of a contractible type. As discussed in Section 6.7.2
this is an alternative formulation of the univalence axiom and the rest of this
proof follows as there.

Note that the first proof uses all three of the points of Lemma 6.B.1 while
the second proof only uses the first two. As the second proof only uses the first
two points it is possible to prove it if point (1) is defined as in Example 6.6.2
leading to a slightly simpler proof of point (2).

6.C Singular Cubical Sets
Recall the functor C → Top, I 7→ [0, 1]I given at (6.1) in Section 6.8.1. In
particular, the face maps (ib) : I − i → I (for b = 0I or 1I) induce the maps
(ib) : [0, 1]I−i → [0, 1]I by i(ib)u = b and j(ib)u = ju if j 6= i is in I. If ψ is in
F(I) and u in [0, 1]I , then ψu is a truth value.

We assume given a family of idempotent functions rI : [0, 1]I × [0, 1] →
[0, 1]I × [0, 1] such that

1. rI(u, z) = (u, z) iff ∂Iu = 1 or z = 0, and

2. for any strict f in Hom(I, J) we have rJ(f × id)rI = rJ(f × id).

124 Chapter 6. Cubical Type Theory

Such a family can for instance be defined as in the following picture (“re-
traction from above center”). If the center has coordinate (1/2, 2), then
rI(u, z) = rI(u′, z′) is equivalent to (2− z′)(−1 + 2u) = (2− z)(−1 + 2u′).

Property (1) holds for the retraction defined by this picture. The property
(2) can be reformulated as rI(u, z) = rI(u′, z′) → rJ(fu, z) = rJ(fu′, z′). It
also holds in this case, since rI(u, z) = rI(u′, z′) is then equivalent to (2 −
z′)(−1 + 2u) = (2 − z)(−1 + 2u′), which implies (2 − z′)(−1 + 2fu) = (2 −
z)(−1 + 2fu′) if f is strict.

Using this family, we can define for each ψ in F(I) an idempotent function

rψ : [0, 1]I × [0, 1]→ [0, 1]I × [0, 1]

having for fixed-points the element (u, z) such that ψu = 1 or z = 0. This
function rψ is completely characterized by the following properties:

1. rψ = id if ψ = 1

2. rψ = rψrI if ψ 6= 1

3. rψ(u, z) = (u, z) if z = 0

4. rψ((ib)× id) = ((ib)× id)rψ(ib)

These properties imply for instance r∂I
(u, z) = (u, z) if ∂Iu = 1 or z = 0

and so they imply r∂I
= rI . They also imply that rψ(u, z) = (u, z) if ψu = 1.

From these properties, we can prove the uniformity of the family of func-
tions rψ.

Theorem 6.C.1. If f is in Hom(I, J) and ψ is in F(J), then rψ(f × id) =
(f × id)rψf .

This is proved by induction on the number of element of I (the result being
clear if I is empty).

A particular case is rJ(f × id) = (f × id)r∂Jf . Note that, in general, ∂Jf
is not ∂I .

A direct consequence of the previous theorem is the following.

Corollary 6.C.2. The singular cubical set associated to a topological space
has a composition structure.

Chapter 7

Canonicity for Cubical
Type Theory

7.1 Introduction
Cubical type theory as presented in [26] is a dependent type theory which
allows one to directly argue about n-dimensional cubes, and in which function
extensionality and Voevodsky’s Univalence Axiom [87] are provable. Cubical
type theory is inspired by a constructive model of dependent type theory in
cubical sets [26] and a previous variation thereof [15, 50]. One of its important
ingredients is that expressions can depend on names to be thought of as ranging
over a formal unit interval I.

Even though the consistency of the calculus already follows from its model
in cubical sets, desired—and expected—properties like normalization and de-
cidability of type checking are not yet established. This note presents a first
step in this direction by proving canonicity for natural numbers in the follow-
ing form: given a context I of the form i1 : I, . . . , ik : I, k ≥ 0, and a derivation
of I ` u : N, there is a unique n ∈ N with I ` u = Sn 0 : N. This n can more-
over be effectively calculated. Canonicity in this form also gives an alternative
proof of the consistency of cubical type theory (see Corollary 7.4.22).

The main idea to prove canonicity is as follows. First, we devise an op-
erational semantics given by a typed and deterministic weak-head reduction
extending the judgmental equality of cubical type theory. This is given for
general contexts although we later on will only use it on terms whose only free
variables are name variables, i.e., variables of type I. One result we obtain is
that our reduction relation is “complete” in the sense that any term in a name
context whose type is the natural numbers can be reduced to one in weak-
head normal form (so to zero or a successor). Second, we will follow Tait’s
computability method [78, 62] and devise computability predicates on typed
expressions in name contexts and corresponding computability relations (to
interpret judgmental equality). These computability predicates are indexed

126 Chapter 7. Canonicity for Cubical Type Theory

by the list of free name variables of the involved expressions and should be
such that substitution induces a cubical set structure on them. This poses
a major difficulty given that the reduction relation is in general not closed
under name substitutions. A solution is to require for computability that re-
duction should behave “coherently” with substitution: simplified, reducing an
expression and then substituting should be related, by the computability re-
lation, to first substituting and then reducing. A similar condition appeared
independently in the Computational Higher Type Theory of Angiuli, Harper,
and Wilson [8] and Angiuli and Harper [7] who work in an untyped setting;
they achieve similar results but for a theory not encompassing the Univalence
Axiom.

In a way, our technique can be considered as a presheaf extension of the
computability argument given in [2, 1]; the latter being an adaption of the
former using a typed reduction relation instead. A similar extension of this
technique has been used to show the independence of Markov’s principle in
type theory [31].

The rest of the paper is organized as follows. In Section 7.2 we introduce the
typed reduction relation. Section 7.3 defines the computability predicates and
relations and shows their important properties. In Section 7.4 we show that
cubical type theory is sound w.r.t. the computability predicates; this entails
canonicity. Section 7.5 sketches how to adapt the computability argument for
the system extended with the circle. We conclude by summarizing and listing
further work in the last section. We assume that the reader is familiar with
cubical type theory as given in [26].

7.2 Reduction
In this section we give an operational semantics for cubical type theory in
the form of a typed and deterministic weak-head reduction. Below we will
introduce the relations Γ ` A � B and Γ ` u � v : A. These relations are
deterministic in the following sense: if Γ ` A � B and Γ ` A � C, then B and
C are equal as expressions (i.e., up to α-equivalence); and, if Γ ` u � v : A
and Γ ` u � w : B, then v and w are equal as expressions. Moreover, these
relations extend judgmental equality, i.e., if Γ ` A � B, then Γ ` A = B, and
if Γ ` u � v : A, then Γ ` u = v : A.

For a context Γ `, a Γ-introduced expression is an expression whose outer
form is an introduction, so one of the form

0,Su,N, λx : A.u, (x : A)→ B, (u, v), (x : A)×B,U, 〈i〉u,PathAuv,
[ϕ1 t1, . . . , ϕn tn], glue [ϕ 7→ t] a,Glue [ϕ 7→ (T,w)]A,

where we require ϕ 6= 1 mod Γ (which we from now on write as Γ ` ϕ 6= 1 : F)
for the latter two cases, and in the case of a system (third to last) we require
Γ ` ϕ1∨· · ·∨ϕn = 1 : F but Γ ` ϕk 6= 1 : F for each k. In case Γ only contains
object and interval variable declarations (and no restrictions ∆, ψ) we simply

7.2. Reduction 127

refer to Γ-introduced as introduced. In such a context, Γ ` ϕ = ψ : F iff ϕ = ψ
as elements of the face lattice F; since F satisfies the disjunction property, i.e.,

ϕ ∨ ψ = 1⇒ ϕ = 1 or ψ = 1,

a system as above will never be introduced in such a context without re-
strictions. We call an expression non-introduced if it is not introduced and
abbreviate this as “n.i.” (often this is referred to as neutral or non-canonical).
A Γ-introduced expression is normal w.r.t. Γ ` · � · and Γ ` · � · : A.

We will now give the definition of the reduction relation starting with the
rules concerning basic type theory.

Γ ` u � v : A Γ ` A = B

Γ ` u � v : B

Γ, x : N ` C Γ ` z : C(x/0) Γ ` s : (x : N)→ C → C(x/ Sx)
Γ ` natrec 0 z s � z : C(x/0)

Γ ` t : N
Γ, x : N ` C Γ ` z : C(x/0) Γ ` s : (x : N)→ C → C(x/ Sx)

Γ ` natrec (S t) z s � s t (natrec t z s) : C(x/S t)

Γ ` t � t′ : N
Γ, x : N ` C Γ ` z : C(x/0) Γ ` s : (x : N)→ C → C(x/ Sx)

Γ ` natrec t z s � natrec t′ z s : C(x/t′)

Γ, x : A ` t : B Γ ` u : A
Γ ` (λx : A.t)u � t(x/u) : B(x/u)

Γ ` t � t′ : (x : A)→ B Γ ` u : A
Γ ` t u � t′u : B(x/u)

Γ, x : A ` B Γ ` u : A Γ ` v : B(x/u)
Γ ` (u, v).1 � u : A

Γ ` t � t′ : (x : A)×B
Γ ` t.1 � t′.1 : A

Γ, x : A ` B Γ ` u : A Γ ` v : B(x/u)
Γ ` (u, v).2 � v : B(x/u)

Γ ` t � t′ : (x : A)×B
Γ ` t.2 � t′.2 : B(x/t′.1)

Note, natrec t z s is not considered as an application (opposed to the presen-
tation in [26]); also the order of the arguments is different to have the main
premise as first argument.

Next, we give the reduction rules for Path-types. Note, that like for Π-
types, there is no η-reduction or expansion, and also there is no reduction for
the end-points of a path.

Γ ` A Γ, i : I ` t : A Γ ` r : I
Γ ` (〈i〉t) r � t(i/r) : A

Γ ` t � t′ : PathAuv Γ ` r : I
Γ ` t r � t′r : A

128 Chapter 7. Canonicity for Cubical Type Theory

The next rules concern reductions for Glue.

Γ ` A Γ, ϕ ` T Γ, ϕ ` w : Equiv T A Γ ` ϕ = 1 : F
Γ ` Glue [ϕ 7→ (T,w)]A � T

Γ, ϕ ` w : Equiv T A
Γ, ϕ ` t : T Γ ` a : A[ϕ 7→ w.1 t] Γ ` ϕ = 1 : F

Γ ` glue [ϕ 7→ t] a � t : T

Γ, ϕ ` w : Equiv T A
Γ, ϕ ` t : T Γ ` a : A[ϕ 7→ w.1 t] Γ ` ϕ 6= 1 : F

Γ ` unglue [ϕ 7→ w] (glue [ϕ 7→ t] a) � a : A

Γ, ϕ ` w : Equiv T A Γ ` u : Glue [ϕ 7→ (T,w)]A Γ ` ϕ = 1 : F
Γ ` unglue [ϕ 7→ w]u � w.1u : A

Γ ` u � u′ : Glue [ϕ 7→ (T,w)]A Γ ` ϕ 6= 1 : F
Γ ` unglue [ϕ 7→ w]u � unglue [ϕ 7→ w]u′ : A

Note that in [26] the annotation [ϕ 7→ w] of unglue was left implicit. The rules
for systems are given by:

Γ ` ϕ1 ∨ · · · ∨ ϕn = 1 : F Γ, ϕi ` Ai (1 ≤ i ≤ n)
Γ, ϕi ∧ ϕj ` Ai = Aj (1 ≤ i, j ≤ n) k minimal with Γ ` ϕk = 1 : F

Γ ` [ϕ1 A1, . . . , ϕn An] � Ak

Γ ` ϕ1 ∨ · · · ∨ ϕn = 1 : F Γ ` A Γ, ϕi ` ti : A (1 ≤ i ≤ n)
Γ, ϕi ∧ ϕj ` ti = tj : A (1 ≤ i, j ≤ n) k minimal with Γ ` ϕk = 1 : F

Γ ` [ϕ1 t1, . . . , ϕn tn] � tk : A

The reduction rules for the universe are:

Γ ` A � B : U
Γ ` A � B

Γ ` A : U Γ, ϕ ` T : U Γ, ϕ ` w : Equiv T A Γ ` ϕ = 1 : F
Γ ` Glue [ϕ 7→ (T,w)]A � T : U

Finally, the reduction rules for compositions are given as follows.

Γ, i : I ` A � B
Γ ` ϕ : F Γ, ϕ, i : I ` u : A Γ ` u0 : A(i0)[ϕ 7→ u(i0)]

Γ ` compiA [ϕ 7→ u]u0 � compiB [ϕ 7→ u]u0 : B(i1)

Γ ` ϕ : F Γ, ϕ, i : I ` u : N Γ, ϕ, i : I ` u = 0 : N
Γ ` compi N [ϕ 7→ u] 0 � 0 : N

7.2. Reduction 129

Γ ` ϕ : F Γ, ϕ, i : I ` u : N Γ, ϕ, i : I ` w : N
Γ, ϕ, i : I ` u = Sw : N Γ ` u0 : N Γ, ϕ ` u(i0) = Su0 : N

Γ ` compi N [ϕ 7→ u] (Su0) � S(compi N [ϕ 7→ predu]u0) : N

Here pred is the usual predecessor function defined using natrec.1

Γ ` ϕ : F Γ, ϕ, i : I ` u : N Γ ` u0 : N[ϕ 7→ u(i0)] Γ ` u0 � v0 : N
Γ ` compi N [ϕ 7→ u]u0 � compi N [ϕ 7→ u] v0 : N

Γ ` ϕ : F Γ, i : I ` A Γ, i : I, x : A ` B
Γ, ϕ, i : I ` u : (x : A)→ B Γ ` u0 : ((x : A)→ B)(i0)[ϕ 7→ u(i0)]

Γ ` compi ((x : A)→ B) [ϕ 7→ u]u0 �
λy : A(i1).compiB(x/ȳ) [ϕ 7→ u ȳ] (u0 ȳ(i0)) : (x : A(i1))→ B(i1)

where y′ = filliA(i/1− i) [] y and ȳ = y′(i/1− i)

Γ ` ϕ : F Γ, i : I ` A Γ, i : I, x : A ` B
Γ, ϕ, i : I ` u : (x : A)×B Γ ` u0 : ((x : A)×B)(i0)[ϕ 7→ u(i0)]

Γ ` compi ((x : A)×B) [ϕ 7→ u]u0 �
(v(i1), compiB(x/v) [ϕ 7→ u.2] (u0.2)) : (x : A(i1))×B(i1)

where v = filliA [ϕ 7→ u.1] (u0.1)

Γ ` ϕ : F Γ, i : I ` A Γ, i : I ` v : A Γ, i : I ` w : A
Γ, ϕ, i : I ` u : PathAv w Γ ` u0 : PathA(i0) v(i0)w(i0)[ϕ 7→ u(i0)]

Γ ` compi (PathAv w) [ϕ 7→ u]u0 �
〈j〉 compiA [(j = 0) 7→ v, (j = 1) 7→ w,ϕ 7→ u j] (u0 j) : PathA(i1) v(i1)w(i1)

Γ, i : I ` A Γ, i : I ` ϕ : F Γ, i : I, ϕ ` T
Γ, i : I, ϕ ` w : Equiv T A Γ ` ψ : F Γ, ψ, i : I ` u : Glue [ϕ 7→ (T,w)]A

Γ ` u0 : (Glue [ϕ 7→ (T,w)]A)(i0)[ψ 7→ u(i0)]
Γ ` compi (Glue [ϕ 7→ (T,w)]A) [ψ 7→ u]u0 �
glue [ϕ(i1) 7→ t1] a1 : (Glue [ϕ 7→ (T,w)]A)(i1)

1We never have to reduce in the system of a composition when defining composition for
natural numbers in this way, which also gives that reduction over Γ never refers to reduction
in a restricted context Γ, ϕ (given that Γ is not restricted).

130 Chapter 7. Canonicity for Cubical Type Theory

Here a1 and t1 are defined like in [26], i.e., given by

a = unglue [ϕ 7→ w]u Γ, i : I, ψ
a0 = unglue [ϕ(i0) 7→ w(i0)]u0 Γ
δ = ∀i.ϕ Γ
a′1 = compiA [ψ 7→ a] a0 Γ
t′1 = compi T [ψ 7→ u]u0 Γ, δ
ω = presi w [ψ 7→ u]u0 Γ, δ

(t1, α) = equivw(i1) [δ 7→ (t′1, ω), ψ 7→ (u(i1), 〈j〉a′1)] a′1 Γ, ϕ(i1)
a1 = compj A(i1) [ϕ(i1) 7→ α j, ψ 7→ a(i1)] a′1 Γ

where we indicated the intended context on the right.

Γ ` ϕ : F Γ, ϕ, i : I ` u : U Γ ` u0 : U[ϕ 7→ u(i0)]
Γ ` compi U [ϕ 7→ u]u0 � Glue [ϕ 7→ (u(i1), equivi u(i/1− i))]u0 : U

Here equivi is defined as in [26]. This concludes the definition of the reduction
relation.

For Γ ` A we write A!Γ if there is B such that Γ ` A � B; in this case
B is uniquely determined by A and we denote B by A↓Γ; if A is normal we
set A↓Γ to be A. Similarly for Γ ` u : A, u!AΓ and u↓AΓ . Note that if a term
or type has a reduct it is non-introduced. We usually drop the subscripts and
sometimes also superscripts since they can be inferred.

From now on we will mainly consider contexts I, J,K, . . . only built from
dimension name declarations; so such a context is of the form i1 : I, . . . , in : I
for n ≥ 0. We sometimes write I, i for I, i : I. Substitutions between such
contexts will be denoted by f, g, h, The resulting category with such name
contexts I as objects and substitutions f : J → I is reminiscent of the category
of cubes as defined in [26, Section 8.1] with the difference that the names
in a contexts I are ordered and not sets. This difference is not crucial for
the definition of computability predicates in the next section but it simplifies
notations. (Note that if I ′ is a permutation of I, then the substitution assigning
to each name in I itself is an isomorphism I ′ → I.) We write r ∈ I(I) if
I ` r : I, and ϕ ∈ F(I) if I ` ϕ : F.

Note that in general reductions I ` A � B or I ` u � v : A are not
closed under substitutions f : J → I. For example, if u is a system [(i =
0) u1, 1 u2], then i ` u � u2 : A (assuming everything is well typed), but
` u(i0) � u1(i0) : A(i0) and u1, u2 might be chosen that u1(i0) and u2(i0) are
judgmentally equal but not syntactically (and even normal by considering two
λ-abstractions where the body is not syntactically but judgmentally equal).
Another example is when u is unglue [ϕ 7→ w] (glue [ϕ 7→ t] a) with ϕ 6= 1 and
with f : J → I such that ϕf = 1; then u reduces to a, but uf reduces to
wf.1 (glue [ϕf 7→ tf] af) which is in general not syntactically equal to af .

7.3. Computability Predicates 131

We write I ` A �s B and I ` u �s v : A if the respective reduction is
closed under name substitutions. That is, I ` A �s B whenever J ` Af � Bf
for all f : J → I. Note that in the above definition, all the rules which do not
have a premise with a negated equation in F and which do not have a premise
referring to another reduction are closed under substitution.

7.3 Computability Predicates
In this section we define computability predicates and establish the properties
we need for the proof of Soundness in the next section. We will define when a
type is computable or forced, written I ` A, when two types are forced equal,
I ` A = B, when an element is computable or forced, I ` u : A, and when
two elements are forced equal, I ` u = v : A. Here ` is the level which is
either 0 or 1, the former indicating smallness.

The definition is given as follows: by main recursion on ` (that is, we define
“0” before “1”) we define by induction-recursion [35]

I ` A

I ` A = B

I ` u : A by recursion on I ` A
I ` u = v : A by recursion on I ` A

where the former two are mutually defined by induction, and the latter two
mutually by recursion on the derivation of I ` A. Formally, I ` A and I `
A = B are witnessed by derivations for which we don’t introduce notations
since the definitions of I ` u : A and I ` u = v : A don’t depend on the
derivation of I ` A. Each such derivation has a height as an ordinal, and
often we will employ induction not only on the structure of such a derivation
but on its height.

Note that the arguments and definitions can be adapted to a hierarchy of
universes by allowing ` to range over a (strict) well-founded poset.

We write I ` A + B for the conjunction of I ` A, I ` B, and I ` A =
B. For ϕ ∈ F(I) we write f : J → I, ϕ for f : J → I with ϕf = 1; furthermore
we write

I, ϕ ` A for ∀f : J → I, ϕ (J ` Af) & I, ϕ ` A,
I, ϕ ` A = B for ∀f : J → I, ϕ (J ` Af = Bf) & I, ϕ ` A = B,

I, ϕ ` u : A for ∀f : J → I, ϕ (J ` uf : Af) & I, ϕ ` u : A,
I, ϕ ` u = v : A for ∀f : J → I, ϕ (J ` uf = vf : Af) &

I, ϕ ` u = v : A.

where the last two abbreviations need suitable premises to make sense. Note
that I, 1 ` A is a priori stronger than I ` A; that these notions are equiva-
lent follows from the Monotonicity Lemma below. Moreover, the definition is
such that I ` J whenever I ` J (where J is any judgment form); it is shown

132 Chapter 7. Canonicity for Cubical Type Theory

in Remark 7.4.18 that the condition I, ϕ ` J in the definition of I, ϕ ` J
above is actually not needed and follows from the other.

I ` A assuming I ` A (i.e., the rules below all have a suppressed premise
I ` A).

I ` N
N-C

I, 1 ` A ∀f : J → I∀u(J ` u : Af ⇒ J ` B(f, x/u))
∀f : J → I∀u, v(J ` u = v : Af ⇒ J ` B(f, x/u) + B(f, x/v))

I ` (x : A)→ B
Pi-C

I, 1 ` A ∀f : J → I∀u(J ` u : Af ⇒ J ` B(f, x/u))
∀f : J → I∀u, v(J ` u = v : Af ⇒ J ` B(f, x/u) + B(f, x/v))

I ` (x : A)×B
Si-C

I, 1 ` A I ` a0 : A I ` a1 : A
I ` PathAa0 a1

Pa-C

1 6= ϕ ∈ F(I) I, 1 ` A I, ϕ ` Equiv T A
I, ϕ ` w : Equiv T A I, ϕ ` Glue [ϕ 7→ (T,w)]A

I ` Glue [ϕ 7→ (T,w)]A
Gl-C

I 1 U
U-C

A n.i. ∀f : J → I(Af ! & J ` Af↓)
∀f : J → I∀g : K → J(K ` Af↓g = Afg↓)

I ` A
Ni-C

Note, that the rule Gl-C above is not circular, as for any f : J → I, ϕ we have
ϕf = 1 and so (Glue [ϕ 7→ (T,w)]A)f is non-introduced.

I ` A = B assuming I ` A, I ` B, and I ` A = B (i.e., each rule below
has the suppressed premises I ` A, I ` B, and I ` A = B).

I ` N = N
N-E

I, 1 ` A = A′

∀f : J → I∀u(J ` u : Af ⇒ J ` B(f, x/u) = B′(f, x/u))
I ` (x : A)→ B = (x : A′)→ B′

Pi-E

I, 1 ` A = A′

∀f : J → I∀u(J ` u : Af ⇒ J ` B(f, x/u) = B′(f, x/u))
I ` (x : A)×B = (x : A′)×B′

Si-E

7.3. Computability Predicates 133

I, 1 ` A = B I ` a0 = b0 : A I ` a1 = b1 : A
I ` PathAa0 a1 = PathB b0 b1

Pa-E

1 6= ϕ ∈ F(I) I, 1 ` A = A′

I, ϕ ` Equiv T A = Equiv T ′A′ I, ϕ ` w = w′ : Equiv T A
I, ϕ ` Glue [ϕ 7→ (T,w)]A = Glue [ϕ 7→ (T ′, w′)]A′

I ` Glue [ϕ 7→ (T,w)]A = Glue [ϕ 7→ (T ′, w′)]A′
Gl-E

I 1 U = U
U-E

A or B n.i. ∀f : J → I(J ` Af↓ = Bf↓)
I ` A = B

Ni-E

I ` u : A by induction on I ` A assuming I ` u : A.
Case N-C.

I ` 0 : N
I ` u : N
I ` Su : N

u n.i. ∀f : J → I(uf !N & J ` uf↓N : N)
∀f : J → I∀g : K → J(K ` uf↓Ng = ufg↓N : N)

I ` u : N

Case Pi-C.

∀f : J → I∀u(J ` u : Af ⇒ J ` wf u : B(f, x/u))
∀f : J → I∀u, v(J ` u = v : Af ⇒ J ` wf u = wf v : B(f, x/u))

I ` w : (x : A)→ B

Case Si-C.

I ` u.1 : A I ` u.2 : B(x/u.1)
I ` u : (x : A)×B

Case Pa-C.

∀f : J → I∀r ∈ I(J)(J ` uf r : Af)
I ` u 0 = a0 : A I ` u 1 = a1 : A

I ` u : PathAa0 a1

Case Gl-C.

I, ϕ ` u : Glue [ϕ 7→ (T,w)]A
∀f : J → I∀w′(J, ϕf w′ = wf : Equiv Tf Af ⇒

J unglue [ϕf 7→ w′]uf = unglue [ϕf 7→ wf]uf : Af)
I ` u : Glue [ϕ 7→ (T,w)]A

Later we will see that from the premises of Gl-C we get I w = w : Equiv T A,
and the second premise above implies in particular I unglue [ϕ 7→ w]u : A;

134 Chapter 7. Canonicity for Cubical Type Theory

the quantification over other possible equivalences is there to ensure invariance
for the annotation.

Case U-C.

I 0 A

I 1 A : U

Case Ni-C.

∀f : J → I(J ` uf : Af↓)
I ` u : A

I ` u = v : A by induction on I ` A assuming I ` u : A, I ` v : A, and
I ` u = v : A. (I.e., each of the rules below has the suppressed premises
I ` u : A, I ` v : A, and I ` u = v : A, but they are not arguments to the
definition of the predicate. This is subtle since in, e.g., the rule for pairs we
only know I ` v.2 : B(x/v.1) not I ` v.2 : B(x/u.1).)

Case N-C.

I ` 0 = 0 : N
I ` u = v : N

I ` Su = S v : N

u or v n.i. ∀f(J ` uf↓N = vf↓N : N)
I ` u = v : N

Case Pi-C.

∀f : J → I∀u(J ` u : Af ⇒ J ` wf u = w′f u : B(f, x/u))
I ` w = w′ : (x : A)→ B

Case Si-C.

I ` u.1 = v.1 : A I ` u.2 = v.2 : B(x/u.1)
I ` u = v : (x : A)×B

Case Pa-C.

∀f : J → I∀r ∈ I(J)(J ` uf r = vf r : Af)
I ` u = v : PathAa0 a1

Case Gl-C.

I, ϕ ` u = v : Glue [ϕ 7→ (T,w)]A
I, 1 ` unglue [ϕ 7→ w]u = unglue [ϕ 7→ w] v : A

I ` u = v : Glue [ϕ 7→ (T,w)]A

Case U-C.

I 0 A = B

I 1 A = B : U

7.3. Computability Predicates 135

Case Ni-C.

∀f : J → I(J ` uf = vf : Af↓)
I ` u = v : A

Note that the definition is such that I ` A = B implies I ` A and
I ` B; and, likewise, I ` u = v : A gives I ` u : A and I ` v : A.
Remark 7.3.1. 1. In the rule Ni-E and the rule for I ` u = v : N in case

u or v are non-introduced we suppressed the premise that the reference
to “↓” is actually well defined; it is easily seen that if I ` A, then A↓ is
well defined, and similarly for I ` u : N, u↓N is well defined.

2. It follows from the substitution lemma below that I ` A whenever A is
non-introduced and I ` A �s B with I ` B. (Cf. also the Expansion
Lemma below.)

3. Note that once we also have proven transitivity, symmetry, and mono-
tonicity, the last premise of Ni-C (and similarly in the rule for non-
introduced naturals) can be restated as J ` Af↓ = A↓f for all f : J →
I.

Lemma 7.3.2. The computability predicates are independent of the deriva-
tion, i.e., if we have two derivations trees d1 and d2 of I ` A, then

I d1
` u : A⇔ I d2

` u : A, and
I d1

` u = v : A⇔ I d2
` u = v : A

where di

` refers to the predicate induced by di.

Proof. By main induction on ` and a side induction on the derivations d1 and
d2. Since the definition of I ` A is syntax directed both d1 and d2 are derived
by the same rule. The claim thus follows from the IH.

Lemma 7.3.3.

1. If I ` A, then I ` A and:

(a) I ` u : A⇒ I ` u : A,
(b) I ` u = v : A⇒ I ` u = v : A.

2. If I ` A = B, then I ` A = B.

Lemma 7.3.4.

1. If I 0 A, then:

(a) I 1 A

(b) I 0 u : A⇔ I 1 u : A
(c) I 0 u = v : A⇔ I 1 u = v : A

136 Chapter 7. Canonicity for Cubical Type Theory

2. If I 0 A = B, then I 1 A = B.

Proof. By simultaneous induction on I 0 A and I 0 A = B.

We will write I A if there is a derivation of I ` A for some `; etc.
Such derivations will be ordered lexicographically, i.e., I 0 A derivations are
ordered before I 1 A derivations.

Lemma 7.3.5.

1. I ` A⇒ I ` A = A

2. I ` A & I ` u : A⇒ I ` u = u : A

Proof. Simultaneously, by induction on ` and side induction on I ` A. In the
case Gl-C, to see (2), note that from the assumption I u : B with B being
Glue [ϕ 7→ (T,w)]A we get in particular

I, ϕ w = w : Equiv T A⇒ I unglue [ϕ 7→ w]u = unglue [ϕ 7→ w]u : A.

But by IH, the premise follows from I, ϕ w : Equiv T A; moreover, I, ϕ
u = u : B is immediate by IH, showing I u = u : B.

Lemma 7.3.6 (Monotonicity/Substitution). For f : J → I we have

1. I ` A⇒ J ` Af ,

2. I ` A = B ⇒ J ` Af = Bf ,

3. I ` A & I ` u : A⇒ J ` uf : Af ,

4. I ` A & I ` u = v : A⇒ J ` uf = vf : Af .

Moreover, the respective heights of the derivations don’t increase.

Proof. By induction on ` and side induction on I ` A and I ` A = B. The
definition of computability predicates and relations is lead such that this proof
is immediate. For instance, note for (1) in the case Gl-C, i.e.,

1 6= ϕ ∈ F(I) I, 1 ` A I, ϕ ` Equiv T A
I, ϕ ` w : Equiv T A I, ϕ ` Glue [ϕ 7→ (T,w)]A

I ` Glue [ϕ 7→ (T,w)]A
Gl-C

we distinguish cases: if ϕf = 1, then J ` Glue [ϕf 7→ (Tf,wf)]Af by the
premise I, ϕ ` Glue [ϕ 7→ (T,w)]A; in case ϕf 6= 1 we can use the same rule
again.

Lemma 7.3.7.

1. I A⇒ I A↓

2. I A = B ⇒ I A↓ = B↓

7.3. Computability Predicates 137

3. I A & I u : A⇒ I u : A↓

4. I A & I u = v : A⇒ I u = v : A↓

5. I u : N⇒ I u↓ : N

6. I u = v : N⇒ I u↓ = v↓ : N

Moreover, the respective heights of the derivations don’t increase.

Proof. (1) By induction on I A. All cases were A is an introduction are
immediate since then A↓ is A. It only remains the case Ni-C:

A n.i. ∀f : J → I(Af ! & J Af↓)
∀f : J → I∀g : K → J(K Af↓g = Afg↓)

I A
Ni-C

We have I A↓ as this is one of the premises.
(5) By induction on I u : N similarly to the last paragraph.
(2) By induction on I A = B. The only case where a reduct may happen

is Ni-E, in which I A↓ = B↓ is a premise. Similar for (6).
(3) and (4): By induction on I A, where the only interesting case is

Ni-C, in which what we have to show holds by definition.

Lemma 7.3.8.

1. If I A = B, then

(a) I u : A⇔ I u : B, and
(b) I u = v : A⇔ I u = v : B.

2. I A = B & I B = C ⇒ I A = C

3. Given I A we get

I u = v : A & I v = w : A⇒ I u = w : A.

4. I A = B ⇒ I B = A

5. I A & I u = v : A⇒ I v = u : A

Proof. We prove the statement for “`” instead of “” by main induction on
` (i.e., we prove the statement for “0” before the statement for “1”); the
statement for “” follows then from Lemma 7.3.4.

Simultaneously by threefold induction on I ` A, I ` B, and I ` C.
(Alternatively by induction on the (natural) sum of the heights of I ` A,
I ` B, and I ` C; we only need to be able to apply the IH if the complexity
of at least one derivation decreases and the others won’t increase.) In the
proof below we will omit ` to simplify notation, except in cases where the level
matters.

138 Chapter 7. Canonicity for Cubical Type Theory

(1) By distinguishing cases on I A = B. We only give the argument for
(1a) as (1b) is very similar except in case Gl-E. The cases N-E and U-E are
trivial.

Case Pi-E. Let I w : (x : A) → B and we show I w : (x : A′) → B′.
For f : J → I let J u : A′f ; then by IH (since J Af = A′f) we get
J u : Af , and thus J wf u : B(f, x/u); again by IH we obtain J wf u :
B′(f, x/u). Now assume J u = v : A′f ; so by IH, J u = v : Af , and thus
J wf u = wf v : B(f, x/u). Again by IH, we conclude J wf u = wf v :
B′(f, x/u). Thus we have proved I w : (x : A′)→ B′.

Case Si-E. For I w : (x : A) × B and we show I w : (x : A′) × B′.
We have I w.1 : A and I w.2 : B(x/w.1). So by IH, I w.1 : A′;
moreover, we have I B(x/w.1) = B′(x/w.1); so, again by IH, we conclude
with I w.2 : B′(x/w.1).

Case Pa-E. Let I u : PathAa0 a1 and we show I u : PathB b0 b1.
Given f : J → I and r ∈ F(J) we have J uf r : Af and thus J uf r : Bf
by IH. We have to check that the endpoints match: I u 0 = a0 : A by
assumption; moreover, I a0 = b0 : A, so by IH (3), I u 0 = b0 : A, thus
again using the IH, I u 0 = b0 : B.

Case Gl-E. Let us abbreviate Glue [ϕ 7→ (T,w)]A by D, and Glue [ϕ 7→
(T ′, w′)]A′ by D′.

(1a) Let I u : D, i.e., I, ϕ u : D and

J unglue [ϕf 7→ w′′]uf = unglue [ϕf 7→ wf]uf : Af (7.1)

whenever f : J → I and J, ϕf w′′ = wf : Equiv Tf Af . Directly by IH we
obtain I, ϕ u : D′. Now let f : J → I and J, ϕf w′′ = w′f : Equiv T ′f A′f ;
by IH, also J, ϕf w′′ = w′f : Equiv Tf Af . Moreover, we have J, ϕf wf =
w′f : Equiv Tf Af , hence (7.1) gives (together with symmetry and transitivity,
applicable by IH)

J unglue [ϕf 7→ w′′]uf = unglue [ϕf 7→ wf]uf : Af, and
J unglue [ϕf 7→ w′f]uf = unglue [ϕf 7→ wf]uf : Af.

Hence, transitivity and symmetry (which we can apply by IH) give that the
above left-hand sides are forced equal of type Af , applying the IH (1b) gives
that they are forced equal of type A′f , and thus I u : D′.

(1b) Let I u = v : D, so we have I, ϕ u = v : D and

I unglue [ϕ 7→ w]u = unglue [ϕ 7→ w] v : A (7.2)

By IH, we get I, ϕ u = v : D′ from I, ϕ u = v : D. Note that we also have
I u : D and I v : D, and thus

I unglue [ϕ 7→ w]u = unglue [ϕ 7→ w′]u : A, and
I unglue [ϕ 7→ w] v = unglue [ϕ 7→ w′] v : A

and thus with (7.2) and transitivity and symmetry (which we can apply by
IH) we obtain I unglue [ϕ 7→ w′]u = unglue [ϕ 7→ w′] v : A, hence also at
type A′ by IH. Therefore we proved I u = v : D′.

7.3. Computability Predicates 139

Case Ni-E. Let I u : A; we have to show I u : B.
Subcase B is non-introduced. Then we have to show J uf : Bf↓ for

f : J → I. We have J Af↓ = Bf↓ and since I B is non-introduced, the
derivation J Bf↓ is shorter than I B, and the derivation J Af↓ is
not higher than I A by Lemma 7.3.7. Moreover, also J uf : Af so by
Lemma 7.3.7 (3) we get J uf : Af↓, and hence by IH, J uf : Bf↓.

Subcase B is introduced. We have I u : A↓ and I A↓ = B↓ but B↓ is
B, and I A↓ has a shorter derivation than I A, so I u : B by IH.

(2) Let us first handle the cases where A, B, or C is non-introduced. It is
enough to show J Af↓ = Cf↓ (if A and C are both introduced, this entails
I A = C for f the identity). We have J Af↓ = Bf↓ and J Bf↓ = Cf↓.
None of the respective derivations get higher (by Lemma 7.3.7) but one gets
shorter since one of the types is non-introduced. Thus the claim follows by IH.

It remains to look at the cases where all are introduced; in this case both
equalities have to be derived by the same rule. We distinguish cases on the
rule.

Case N-E. Trivial. Case Si-E. Similar to Pi-E below. Case Pa-E and
Gl-E. Use the IH. Case U-E. Trivial.

Case Pi-E. Let use write A as (x : A′)→ A′′ and similar for B and C. We
have I A′ = B′ and I B′ = C ′, and so by IH, we get I A′ = C ′; for
J u : A′f where f : J → I it remains to be shown that J A′′(f, x/u) =
C ′′(f, x/u). By IH, we also have J u : B′f , so we have

J A′′(f, x/u) = B′′(f, x/u) and J B′′(f, x/u) = C ′′(f, x/u)

and can conclude by the IH.
(3) By cases on I A. All cases follow immediately using the IH, except

for N-C and U-C. In case N-C, we show transitivity by a side induction
on the (natural) sum of the height of the derivations I u = v : N and
I v = w : N. If one of u,v, or w is non-introduced, we get that one of
the derivations J uf↓ = vf↓ : N and J vf↓ = wf↓ : N is shorter (and
the other doesn’t get higher), so by SIH, J uf↓ = wf↓ : N which entails
I u = w : N. Otherwise, I u = v : N and I v = w : N have to be
derived with the same rule and I u = w : N easily follows (using the SIH in
the successor case).

In case U-C, we have I 1 u = v : U and I 1 v = w : U, i.e., I 0 u = v
and I 0 v = w. We want to show I 1 u = w : U, i.e., I 0 u = w. But by
IH(`), we can already assume the lemma is proven for ` = 0, hence can use
transitivity and deduce I 0 u = w.

The proofs of (4) and (5) are by distinguishing cases and are straightfor-
ward.

Remark 7.3.9. Now that we have established transitivity, proving computabil-
ity for Π-types can also achieved as follows. Given we have I (x : A) → B
and derivations I ` w : (x : A) → B, I ` w′ : (x : A) → B, and I ` w = w′ :
(x : A)→ B, then I w = w′ : (x : A)→ B whenever we have

∀f : J → I∀u, v(J u = v : Af ⇒ J wf u = w′f v : B(f, x/u)).

140 Chapter 7. Canonicity for Cubical Type Theory

(In particular, this gives I w : (x : A)→ B and I w′ : (x : A)→ B.)
Likewise, given I ` (x : A)→ B, I ` (x : A′)→ B′, and I ` (x : A)→ B =

(x : A′)→ B′, we get I (x : A)→ B = (x : A′)→ B′ whenever I A = A′

and

∀f : J → I∀u, v(J u = v : Af ⇒ J B(f, x/u) = B′(f, x/v)).

Lemma 7.3.10.

1. I A⇒ I A = A↓

2. I u : N⇒ I u = u↓ : N

Proof. (1) We already proved I A↓ in Lemma 7.3.7 (1). By induction on
I A. All cases where A is an introduction are immediate since then A↓ is
A. It only remains the case Ni-C:

A n.i. ∀f : J → I(Af ! & J Af↓)
∀f : J → I∀g : K → J(K Af↓g = Afg↓)

I A
Ni-C

We now show I A = A↓; since A is non-introduced we have to show J
Af↓ = (A↓f)↓ for f : J → I. I A↓ has a shorter derivation than I A,
thus so has J A↓f ; hence by IH, J A↓f = (A↓f)↓. We also have
J A↓f = Af↓ by definition of I A, and thus we obtain J Af↓ = (A↓f)↓
using symmetry and transitivity.

(2) Similar, by induction on I u : N.

Lemma 7.3.11 (Expansion Lemma). Let I ` A and I ` u : A; then:

∀f : J → I(uf !Af & J ` uf↓Af : Af)
∀f : J → I(J ` uf↓ = u↓f : Af)
I ` u : A & I ` u = u↓ : A

In particular, if I ` u �s v : A and I ` v : A, then I ` u : A and
I ` u = v : A.

Proof. By induction on I A. We will omit the level annotation ` whenever
it is inessential.

Case N-C. We have to show K uf↓g = ufg↓ : N for f : J → I and
g : K → J ; we have J uf↓ = u↓f : N, thus K uf↓g = u↓fg : N.
Moreover, K u↓fg = ufg↓ : N by assumption, and thus by transitivity
K uf↓g = u↓fg = ufg↓ : N. (Likewise one shows that the data in the
premise of the lemma is closed under substitution.)

I u = u↓ : N holds by Lemma 7.3.7 (2).
Case Pi-C. First, let J a : Af for f : J → I. We have

K ` (uf a)g � (ufg)↓ (ag) : B(fg, x/ag)

7.3. Computability Predicates 141

for g : K → J , and also K (ufg)↓ (ag) : B(fg, x/ag) and we have the
compatibility condition

K (uf a)g↓ = ((ufg)↓) (ag) = (uf↓g) (ag)
= (uf↓ a)g = (uf a)↓g : B(fg, x/ag),

so by IH, J uf a : B(f, x/a) and J uf a = uf↓ a : B(f, x/a). Since also
J uf↓ = u↓f : ((x : A)→ B)f we also get J uf a = u↓f a : B(f, x/a).

Now if J a = b : Af , we also have J a : Af and J b : Af , so
like above we get J uf a = uf↓ a : B(f, x/a) and J uf b = uf↓ b :
B(f, x/b) (and thus also J uf b = uf↓ b : B(f, x/a)). Moreover, J uf↓ a =
uf↓ b : B(f, x/a) and hence we can conclude J uf a = uf b : B(f, x/a) by
transitivity and symmetry. Thus we showed both I u : (x : A) → B and
I u = u↓ : (x : A)→ B.

Case Si-C. Clearly we have (u.1f)↓ = (uf↓).1, J (uf↓).1 : Af , and

J (u.1f)↓ = (uf↓).1 = (u↓f).1 = (u↓.1)f = (u.1)↓f : Af

so the IH gives I u.1 : A and I u.1 = (u↓).1 : A. Likewise (u.2f)↓ =
(uf↓).2 and J (uf↓).2 : B(f, x/uf↓.1), hence we also get J (uf↓).2 :
B(f, x/uf.1); as above one shows J (u.2f)↓ = u.2↓f : B(f, x/uf.1), apply-
ing the IH once more to obtain I u.2 = u↓.2 : B(x/u.1)) which was what
remained to be proven.

Case Pa-C. Let us write PathAv w for the type and let f : J → I, r ∈ I(J),
and g : K → J . We have

K ` (uf r)g � (ufg)↓ (rg) : Afg

and K (ufg)↓ (rg) : Afg; moreover,

K (uf r)g↓ = (ufg)↓ (rg) = (uf↓g) (rg) = (uf↓ r)g = (uf r)↓g : Afg.

Thus by IH, J uf r : Af and

J uf r = uf↓ r = u↓f r : Af. (7.3)

So we obtain I u 0 = u↓ 0 = v : A and I u 1 = u↓ 1 = w : A, and hence
I u : PathAv w; I u = u↓ : PathAv w follows from (7.3).

Case Gl-C. Abbreviate Glue [ϕ 7→ (T,w)]A by B. Note that we have
ϕ 6= 1. First, we claim that for any f : J → I, J b : Bf , and J, ϕf w′ =
wf : Equiv Tf Af ,

J, ϕf unglue [ϕf 7→ w′] b = w′.1 b : Af. (7.4)

(In particular both sides are computable.) Indeed, for g : K → J with ϕfg = 1
we have that

K ` (unglue [ϕf 7→ w′] b)g �s w
′g.1 (bg) : Afg

142 Chapter 7. Canonicity for Cubical Type Theory

and K w′g.1 (bg) : Afg since I, ϕ B = T (which in turn follows from
Lemma 7.3.10 (1)). Thus by IH (J Af has a shorter derivation than I B),

K (unglue [ϕf 7→ w′] b)g = (w′.1 b)g : Afg

as claimed.
Next, let f : J → I such that ϕf = 1; then using the IH (J Bf has a

shorter derivation than I B), we get J uf : Bf and J uf = uf↓ : Bf ,
and hence also J uf = u↓f : Bf (since J uf↓ = u↓f : Bf). That is, we
proved

I, ϕ u : B and I, ϕ u = u↓ : B. (7.5)

We will now first show

J unglue [ϕf 7→ w′]uf = (unglue [ϕf 7→ w′]uf)↓ : Af (7.6)

for and f : J → I and J, ϕf w′ = wf : Equiv Tf Af . We can assume that
w.l.o.g. ϕf 6= 1, since if ϕf = 1, J uf : Bf by (7.5), and (7.6) follows from
(7.4) noting that its right-hand side is the reduct. We will use the IH to show
(7.6), so let us analyze the reduct:

(unglue [ϕf 7→ w′]uf)g↓ =
{

(w′g.1) (ufg) if ϕfg = 1,
unglue [ϕf 7→ w′g] (ufg↓) otherwise.

(7.7)

where g : K → J . In either case, the reduct is computable: in the first case,
use (7.5) and J w′.1 : T → A together with the observation I, ϕ B = T ;
in the second case this follows from J ufg↓ : Bfg. In order to apply the
IH, it remains to verify

K (unglue [ϕf 7→ w′]uf)g↓ = (unglue [ϕf 7→ w′]uf)↓g : Afg.

In case ϕfg 6= 1, we have

K unglue [ϕfg 7→ w′g] (ufg↓)
= unglue [ϕfg 7→ wfg] (ufg↓) since K ufg↓ : Bfg
= unglue [ϕfg 7→ wfg] (uf↓g) since K ufg↓ = uf↓g : Bfg
= unglue [ϕfg 7→ w′g] (uf↓g) : Afg since K uf↓g : Bfg

which is what we had to show in this case. In case ϕfg = 1, we have to prove

K (w′g.1) (ufg) = unglue [ϕf 7→ w′g] (uf↓g) : Afg. (7.8)

But by (7.5) we have K ufg = ufg↓ = uf↓g : Bfg, so also K
(w′g.1) (ufg) = (w′g.1) (uf↓g) : Afg, so (7.8) follows from (7.4) using J
uf↓ : Bf . This concludes the proof of (7.6).

As w′ could have been wf we also get

J unglue [ϕf 7→ wf]uf = (unglue [ϕf 7→ wf]uf)↓ : Af. (7.9)

7.4. Soundness 143

In order to prove I u : B it remains to check that the left-hand side
of (7.6) is forced equal to the left-hand side of (7.9); so we can simply check
this for the respective right-hand sides: in case ϕf = 1, these are w′.1uf and
wf.1uf , respectively, and hence forced equal since J w′ = wf : Equiv Tf Af ;
in case ϕf 6= 1, we have to show

J unglue [ϕf 7→ w′] (uf↓) = unglue [ϕf 7→ wf] (uf↓) : Af

which simply follows since J uf↓ : Bf .
In order to prove I u = u↓ : B it remains to check

I unglue [ϕ 7→ w]u = unglue [ϕ 7→ w] (u↓) : A,

but this is (7.9) in the special case where f is the identity.
Case U-C. Let us write B for u. We have to prove I 1 B : U and

I 1 B = B↓ : U, i.e., I 0 B and I 0 B = B↓. By Lemma 7.3.10 (1), it
suffices to prove the former. For f : J → I we have

J ` Bf � Bf↓U : U

and hence also
J ` Bf � Bf↓U

i.e., Bf !, and Bf↓ is Bf↓U ; since J 1 Bf↓ : U we have J 0 Bf↓, and
likewise J 0 Bf↓ = B↓f . Moreover, if also g : K → J , we obtain K 0
Bfg↓ = B↓fg from the assumption. Hence K 0 Bf↓g = B↓fg = Bfg↓,
therefore I 0 B what we had to show.

Case Ni-C. Then I A↓ has a shorter derivation than I A; moreover,
for f : J → I we have J ` uf � uf↓Af : Af so also J ` uf � uf↓Af : A↓f
since J ` Af = A↓f . By Lemma 7.3.7 (1), I A = A↓ so also J uf↓ : A↓f
and J uf↓ = u↓f : A↓f , and hence by IH, I u : A↓ and I u = u↓ : A↓,
so also I u : A and I u = u↓ : A using I A = A↓ again.

7.4 Soundness
The aim of this section is to prove canonicity as stated in the introduction. We
will do so by showing that each computable instance of a judgment derived in
cubical type theory is computable (allowing free name variables)—this is the
content of the Soundness Theorem below.

We first extend the computability predicates to contexts and substitutions.
 Γ assuming Γ ` .

 �
 Γ i /∈ dom(Γ)

 Γ, i : I
 Γ Γ ` ϕ : F

 Γ, ϕ

 Γ ∀I∀σ(I σ : Γ⇒ I Aσ)
∀I∀σ, τ(I σ = τ : Γ⇒ I Aσ = Aτ) x /∈ dom(Γ)

 Γ, x : A

144 Chapter 7. Canonicity for Cubical Type Theory

I σ : Γ by induction on Γ assuming I ` σ : Γ.

I () : �
I σ : Γ r ∈ I(I)
I (σ, i/r) : Γ, i : I

I σ : Γ ϕσ = 1
I σ : Γ, ϕ

I σ : Γ I u : Aσ
I (σ, x/u) : Γ, x : A

I σ = τ : Γ by induction on Γ, assuming I σ : Γ, I τ : Γ, and
I ` σ = τ : Γ.

I () = () : �
I σ = τ : Γ r ∈ I(I)

I (σ, i/r) = (τ, i/r) : Γ, i : I

I σ = τ : Γ ϕσ = ϕτ = 1
I σ = τ : Γ, ϕ

I σ = τ : Γ I u = v : Aσ
I (σ, x/u) = (τ, x/v) : Γ, x : A

We write I r : I for r ∈ I(I), I r = s : I for r = s ∈ I(I), and likewise
I ϕ : F for ϕ ∈ F(I), I ϕ = ψ : F for ϕ = ψ ∈ F(I). In the next definition
we allow A to be F or I, and also correspondingly for a and b to range over
interval and face lattice elements.

Definition 7.4.1.

Γ |= :⇔ Γ
Γ |= A = B :⇔ Γ ` A = B & Γ |= &

∀I, σ, τ(I σ = τ : Γ⇒ I Aσ = Bτ)
Γ |= A :⇔ Γ ` A & Γ |= A = A

Γ |= a = b : A :⇔ Γ ` a = b : A & Γ |= A &
∀I, σ, τ(I σ = τ : Γ⇒ I aσ = bτ : Aσ)

Γ |= a : A :⇔ Γ ` a : A & Γ |= a = a : A
Γ |= σ = τ : ∆ :⇔ Γ ` σ = τ : ∆ & Γ |= & ∆ |= &

∀I, δ, γ(I δ = γ : Γ⇒ I σδ = τγ : ∆)
Γ |= σ : ∆ :⇔ Γ ` σ : ∆ & Γ |= σ = σ : ∆

Remark 7.4.2.

1. For each I we have I, and J σ : I iff σ : J → I; likewise, J σ =
τ : I iff σ = τ .

2. For computability of contexts and substitutions monotonicity and par-
tial equivalence properties hold analogous to computability of types and
terms.

3. Given Γ and I σ = τ : Γ, then for any Γ ` ϕ : F we get ϕσ = ϕτ ∈
F(I) since ϕσ and ϕτ only depend on the name assignments of σ and τ
which have to agree by I σ = τ : Γ. Similarly for Γ ` r : I.

7.4. Soundness 145

4. The definition of “|=” slightly deviates from the approach we had in the
definition of “” as, say, Γ |= A is defined in terms of Γ |= A = A.
Note that by the properties we already established about “” we get
that Γ |= A = B implies Γ |= A and Γ |= B (given we know Γ ` A and
Γ ` B, respectively); and, likewise, Γ |= a = b : A entails Γ |= a : A and
Γ |= b : A (given Γ ` a : A and Γ ` b : A, respectively). Also, note that
in the definition of, say, Γ |= A, the condition

∀I, σ, τ(I σ = τ : Γ⇒ I Aσ = Aτ)

implies
∀I, σ(I σ : Γ⇒ I Aσ).

In fact, we will often have to establish the latter condition first when
showing the former.

5. I |= A = B iff I A = B, and I |= a = b : A iff I A and I a = b : A;
moreover, given I |= A and I, x : A ` B, then I, x : A |= B iff

∀f : J → I∀u(J u : Af ⇒ J B(f, x/u)) &
∀f : J → I∀u, v(J u = v : Af ⇒ J B(f, x/u) = B(f, x/v))

(Note that the second formula in the above display implies the first.)
Thus the premises of Pi-C and Si-C are simply I |= A and I, x : A |= B.
Also, I, ϕ A = B iff I, ϕ |= A = B; and I, ϕ |= a = b : A iff I, ϕ A
and I, ϕ a = b : A.

6. By Lemma 7.3.8 we get that Γ |= · = ·, Γ |= · = · : A, and Γ |= · = · : ∆
are partial equivalence relations.

Theorem 7.4.3 (Soundness). Γ ` J ⇒ Γ |= J

The proof of the Soundness Theorem spans the rest of this section. We
will mainly state and prove congruence rules as the proof of the other rules
are special cases.

Lemma 7.4.4. The context formation rules are sound:

� |=
Γ |= i /∈ dom(Γ)

Γ, i : I |=
Γ |= ϕ : F
Γ, ϕ |=

Γ |= A x /∈ dom(Γ)
Γ, x : A |=

Proof. Immediately by definition.

Lemma 7.4.5. Given Γ |=, Γ ` r : I, Γ ` s : I, Γ ` ϕ : F, and Γ ` ψ : F we
have:

1. Γ ` r = s : I⇒ Γ |= r = s : I

2. Γ ` ϕ = ψ : F⇒ Γ |= ϕ = ψ : F

146 Chapter 7. Canonicity for Cubical Type Theory

Proof. (1) By virtue of Remark 7.4.2 (3) it is enough to show rσ = sσ ∈ I(I)
for I σ : Γ. But then by applying the substitution I ` σ : Γ we get
I ` rσ = sσ : I, and thus rσ = sσ ∈ I(I) since the context I does not contain
restrictions. The proof of (2) is analogous.

Lemma 7.4.6. The rule for type conversion is sound:

Γ |= a = b : A Γ |= A = B

Γ |= a = b : B

Proof. Suppose I σ = τ : Γ. By assumption we have I aσ = bτ : Aσ.
Moreover also I σ = σ : Γ, so I Aσ = Bσ, and hence I aσ = bτ : Bσ
by Lemma 7.3.8 which was what we had to prove.

Lemma 7.4.7.

Γ |= σ = τ : ∆ ∆ |= A = B

Γ |= Aσ = Bτ

Γ |= σ = τ : ∆ ∆ |= a = b : A
Γ |= aσ = bτ : Aσ

Γ |= σ = τ : ∆ ∆ |= δ = γ : Ξ
Γ |= δσ = γτ : Ξ

Proof. Immediate by definition.

Lemma 7.4.8. The rules for Π-types are sound:

1.
Γ |= A = A′ Γ, x : A |= B = B′

Γ |= (x : A)→ B = (x : A′)→ B′

2.
Γ |= A = A′ Γ, x : A |= t = t′ : B

Γ |= λx : A.t = λx : A′.t′ : (x : A)→ B

3.
Γ |= w = w′ : (x : A)→ B Γ |= u = u′ : A

Γ |= w u = w′ u′ : B(x/u)

4.
Γ, x : A |= t : B Γ |= u : A

Γ |= (λx : A.t)u = t(x/u) : B(x/u)

5.

Γ |= w : (x : A)→ B
Γ |= w′ : (x : A)→ B Γ, x : A |= w x = w′ x : B

Γ |= w = w′ : (x : A)→ B

Proof. Abbreviate (x : A)→ B by C. We will make use of Remark 7.3.9.
(1) It is enough to prove this in the case where Γ is of the form I, in which

case this directly follows by Pi-E.

7.4. Soundness 147

(2) Suppose Γ |= A = A′ and Γ, x : A |= t = t′ : B; this entails Γ, x : A |=
B. For I σ = τ : Γ we show I (λx : A.t)σ = (λx : A′.t′)τ : Cσ. For this
let J u = v : Aσf where f : J → I. Then also J u = v : A′τf ,

J ` (λx : A.t)σf u �s t(σf, x/u) : B(σf, x/u), and
J ` (λx : A′.t′)τf v �s t

′(τf, x/v) : B(τf, x/v).

Moreover, J (σf, x/u) = (τf, x/v) : Γ, x : A, and so J B(σf, x/u) =
B(τf, x/v) and

J t(σf, x/u) = t′(τf, x/v) : B(σf, x/u)

which gives

J (λx : A.t)σf u = t(σf, x/u) : B(σf, x/u), and
J (λx : A′.t′)τf v = t′(τf, x/v) : B(τf, x/v),

by applying the Expansion Lemma twice, and thus also

J (λx : A.t)σf u = (λx : A′.t′)τf v : B(σf, x/u)

what we had to show.
(3) For I σ = τ : Γ we get I wσ = w′τ : Cσ and I uσ = u′τ : Aσ;

so also I wσ : Cσ, therefore I (w u)σ = wσ u′τ = (w′ u′)τ : B(σ, x/u).
(4) Given I σ = τ : ∆ we get, like in (2), I (λx : A.t)σ uσ =

t(σ, x/uσ) : B(σ, x/uσ) using the Expansion Lemma; moreover, we have I
(σ, x/uσ) = (τ, x/uτ) : Γ, x : A, hence

I (λx : A.t)σ uσ = t(σ, x/uσ) = t(τ, x/uτ) : B(σ, x/uσ).

(5) Suppose I σ = τ : Γ and J u : Aσf for f : J → I. We have to
show J wσf u = w′τf u : B(σf, x/u). We have

J (σf, x/u) = (τf, x/u) : Γ, x : A

and thus, by the assumption Γ, x : A |= w x = w′ x : B, we get

J (w x)(σf, x/u) = (w′ x)(τf, x/u) : B(σf, x/u).

Since x does neither appear in w nor in w′ this was what we had to prove.

Lemma 7.4.9. The rules for Σ-types are sound:

1.
Γ |= A = A′ Γ, x : A |= B = B′

Γ |= (x : A)×B = (x : A′)×B′

2.
Γ, x : A |= B Γ |= u = u′ : A Γ |= v = v′ : B(x/u)

Γ |= (u, v) = (u′, v′) : (x : A)×B

148 Chapter 7. Canonicity for Cubical Type Theory

3.
Γ, x : A |= B Γ |= w = w′ : (x : A)×B

Γ |= w.1 = w′.1 : A
Γ |= w.2 = w′.2 : B(x/w.1)

4.
Γ, x : A |= B Γ |= u : A Γ |= v : B(x/u)

Γ |= (u, v).1 = u : A
Γ |= (u, v).2 = v : B(x/u)

5.

Γ, x : A |= B Γ |= w : (x : A)×B Γ |= w′ : (x : A)×B
Γ |= w.1 = w′.1 : A Γ |= w.2 = w′.2 : B(x/w.1)

Γ |= w = w′ : (x : A)×B

Lemma 7.4.10. Given I, x : N |= C we have:

1.
I u : N I z : C(x/0) I s : (x : N)→ C → C(x/Sx)

I natrecu z s : C(x/u)
I natrecu z s = (natrecu z s)↓ : C(x/u)

2.

I u = u′ : N
I z = z′ : C(x/0) I s = s′ : (x : N)→ C → C(x/Sx)

I natrecu z s = natrecu′ z′ s′ : C(x/u)

Proof. By simultaneous induction on I u : N and I u = u′ : N.
Case I 0 : N. We have I ` natrec 0 z s �s z : C(x/0) so (1) follows from

the Expansion Lemma.
Case I 0 = 0 : N. (2) immediately follows from (1) and I z = z′ :

C(x/0).
Case I Su : N from I u : N. We have

I ` natrec (Su) z s �s s u (natrecu z s) : C(x/ Su)

and I s u (natrecu z s) : C(x/ Su) by IH, and using that u and s are com-
putable. Hence we are done by the Expansion Lemma.

Case I Su = Su′ : N from I u = u′ : N. (2) follows from (1) and
I s = s′ : (x : N)→ C → C(x/ Sx), I u = u′ : N, and the IH.

Case I u : N for u non-introduced. For f : J → I we have

J ` (natrecu z s)f � natrec (uf↓) zf sf : C(f, x/uf↓).

Moreover, we have I uf↓ and I uf↓ = u↓f : N with a shorter derivation
(and thus also J C(f, x/uf↓) = C(x/u↓)f), hence by IH

J natrec (uf↓) zf sf : C(x/u↓)f, and
J natrec (uf↓) zf sf = (natrec (u↓) z s)f : C(x/u↓)f,

which yields the claim by the Expansion Lemma.

7.4. Soundness 149

Case I u = u′ : N for u or u′ non-introduced. We have

I natrecu z s = natrec (u↓) z s : C(x/u)

by either (1) (if u is non-introduced) or by reflexivity (if u is an introduction);
likewise for u′. So with the IH for I u↓ = u′↓ : N we obtain

I natrecu z s = natrec (u↓) z s = natrec (u′↓) z′ s′ = natrecu′ z′ s′ : C(x/u)

what we had to show.

We write n for the numeral Sn 0 where n ∈ N.

Lemma 7.4.11. If I u : N, then I u = n : N (and hence also I ` u = n :
N) for some n ∈ N.

Proof. By induction on I u : N. The cases for zero and successor are
immediate. In case u is non-introduced, then I u↓ = n for some n ∈ N by
IH. By Lemma 7.3.10 (2) and transitivity we conclude I u = n : N.

Lemma 7.4.12. I · = · : N is discrete, i.e., if I u : N, I v : N, and
J uf = vg : N for some f, g : J → I, then I u = v : N.

Proof. By Lemma 7.4.11, we have I u = n : N and I v = m : N for some
n,m ∈ N, and thus J n = uf = vg = m : N, i.e., J n = m : N and hence
n = m which yields I u = v : N.

Lemma 7.4.13. The rules for Path-types are sound:

1.
Γ |= A = A′ Γ |= u = u′ : A Γ |= v = v′ : A

Γ |= PathAuv = PathA′ u′ v′

2.
Γ |= A Γ, i : I |= t = t′ : A

Γ |= 〈i〉t = 〈i〉t′ : PathA t(i0) t(i1)

3.
Γ |= w = w′ : PathAuv Γ |= r = r′ : I

Γ |= w r = w′ r′ : A

4.
Γ |= w : PathAuv

Γ |= w 0 = u : A Γ |= w 1 = v : A

5.
Γ |= A Γ, i : I |= t : A Γ |= r : I

Γ |= (〈i〉t) r = t(i/r) : A

6.
Γ |= w : PathAuv Γ |= w′ : PathAuv Γ, i : I |= w i = w′ i : A

Γ |= w = w′ : PathAuv

150 Chapter 7. Canonicity for Cubical Type Theory

Proof. (1) Follows easily by definition.
(2) For I σ = σ′ : Γ we have to show

I (〈i〉t)σ = (〈i〉t′)σ′ : PathAσ t(σ, i/0) t(σ, i/1). (7.10)

For f : J → I and r ∈ I(J) we have J (σf, i/r) = (σ′f, i/r) : Γ, i : I and

J ` (〈i〉t)(σf) r �s t(σf, i/r) : Aσf, and
J ` (〈i〉t′)(σ′f) r �s t

′(σ′f, i/r) : Aσ′f,

and moreover J t(σf, i/r) = t′(σ′f, i/r) : Aσf and J Aσf = Aσ′f by
assumption. Hence the Expansion Lemma yields

J (〈i〉t)(σf) r = t(σf, i/r) : Aσf, and
J (〈i〉t′)(σ′f) r = t′(σ′f, i/r) : Aσf,

in particular also, say J (〈i〉t)σ 0 = t(σ, i/0) : Aσ and J (〈i〉t′)σ′ 0 =
t′(σ′, i/0) = t(σ, i/0) : Aσ. And hence (7.10) follows.

(3) Supposing I σ = σ′ : Γ we have to show

I (wσ) (rσ) = (w′σ′) (r′σ) : Aσ.

We have I wσ = w′σ′ : PathAσ uσ vσ and rσ = r′σ′, hence the claim follows
by definition.

(4) Let I σ = σ′ : Γ; we have to show, say, I wσ 0 = uσ′ : Aσ.
First, we get I wσ : PathAσ uσ vσ. Since Γ |= w : PathAuv we also have
Γ |= PathAuv, hence

I PathAσ uσ vσ = PathAσ′ uσ′ vσ′. (7.11)

Hence we also obtain I wσ : PathAσ′ uσ′ vσ′, and thus I wσ 0 = uσ′ :
Aσ′. But (7.11) also yields I Aσ = Aσ′ by definition, so I wσ 0 = uσ′ : Aσ
what we had to show.

(5) Similar to (2) using the Expansion Lemma.
(6) For I σ = σ′ : Γ, f : J → I, and r ∈ I(J), we have J (σf, i/r) =

(σ′f, i/r) : Γ, i : I, and thus

J (w i)(σf, i/r) = (w′ i)(σ′f, i/r) : Aσf. (7.12)

But (w i)(σf, i/r) is wσf r, and (w′ i)(σ′f, i/r) is w′σ′f r, so (7.12) is what
we had to show.

Lemma 7.4.14. Let ϕi ∈ F(I) and ϕ1 ∨ · · · ∨ ϕn = 1.

1. Let I, ϕi ` Ai and I, ϕi ∧ ϕj ` Ai = Aj for all i, j; then

(a) I ` [ϕ1 A1, . . . , ϕn An], and
(b) I ` [ϕ1 A1, . . . , ϕn An] = Ak whenever ϕk = 1.

7.4. Soundness 151

2. Let I ` A, I, ϕi ` ti : A, and I, ϕi ∧ ϕj ` ti = tj : A for all i, j; then

(a) I ` [ϕ1 t1, . . . , ϕn tn] : A, and
(b) I ` [ϕ1 t1, . . . , ϕn tn] = tk : A whenever ϕk = 1.

Proof. (1) Let us abbreviate [ϕ1 A1, . . . , ϕn An] by A. Because A is non-
introduced, we have to show J Af↓ and J Af↓ = A↓f . For the former
observe that Af↓ is Akf with k minimal such that ϕkf = 1. For the latter
use that J Akf = Alf if ϕkf = 1 and ϕl = 1, since I, ϕk ∧ ϕl Ak = Al.

(2) Let us write t for [ϕ1 t1, . . . , ϕn tn]. By virtue of the Expansion Lemma,
it suffices to show J tf↓ : Af and K tf↓ = t↓f : Af . The proof is just
like the proof for types given above.

Lemma 7.4.15. Given Γ |= ϕ1 ∨ · · · ∨ ϕn = 1 : F, then:

Γ, ϕ1 |= J . . . Γ, ϕn |= J
Γ |= J

Proof. Let ϕ = ϕ1 ∨ · · · ∨ ϕn. Say if J is a typing judgment of the form A.
For I σ : Γ we have ϕσ = 1, so ϕkσ = 1 for some k, hence I Aσ by
Γ, ϕk |= A. Now let I σ = τ : Γ; then ϕiσ = ϕiτ (σ and τ assign the same
elements to the interval variables), so ϕσ = ϕτ = 1 yields ϕkσ = ϕkτ = 1 for
some common k and thus I Aσ = Aτ follows from Γ, ϕk |= A. The other
judgment forms are similar.

For I A and I, ϕ v : A we write I u : A[ϕ 7→ v] for I u : A and
I, ϕ u = v : A. And likewise I u = w : A[ϕ 7→ v] means I u = w : A
and I, ϕ u = v : A (in this case also I, ϕ w = v : A follows). We use
similar notations for for “|=”.

Lemma 7.4.16. Given ϕ ∈ F(I) and I ` A,ϕ ∈ F(I), I, ϕ ` T , and
I, ϕ ` w : Equiv T A, and write B for Glue [ϕ 7→ (T,w)]A. Then:

1. I ` B and I, ϕ ` B = T .

2. If I ` A = A′, I, ϕ ` T = T ′, I, ϕ ` w = w′ : Equiv T A, then
I ` B = Glue [ϕ 7→ (T ′, w′)]A′.

3. If I ` u : B and I, ϕ ` w = w′ : Equiv T A, then I ` unglue [ϕ 7→
w′]u : A[ϕ 7→ w′.1u] and I ` unglue [ϕ 7→ w]u = unglue [ϕ 7→ w′]u : A.

4. If I ` u = u′ : B, then

I ` unglue [ϕ 7→ w]u = unglue [ϕ 7→ w]u′ : A.

5. If I, ϕ ` t = t′ : T and I ` a = a′ : A[ϕ 7→ w.1 t], then

(a) I ` glue [ϕ 7→ t] a = glue [ϕ 7→ t′] a′ : B,
(b) I, ϕ ` glue [ϕ 7→ t] a = t : T , and

152 Chapter 7. Canonicity for Cubical Type Theory

(c) I ` unglue [ϕ 7→ w] (glue [ϕ 7→ t] a) = a : A.

6. If I ` u : B, then I ` u = glue [ϕ 7→ u](unglue [ϕ 7→ w]u) : B.

Proof. (1) Let us first prove I, ϕ B and I, ϕ B = T ; but in I, ϕ, ϕ becomes
1 so w.l.o.g. let us assume ϕ = 1; then B is non-introduced and I ` B �s T
so I B from I T . For I B = T we have to show J Bf↓ = Tf↓ for
f : J → I. But Bf↓ is Tf so this is an instance of Lemma 7.3.10.

It remains to prove I B in case where ϕ 6= 1; for this use Gl-C with the
already proven I, ϕ B.

(2) In case ϕ 6= 1 we only have to show I, ϕ B = B′ and can apply
Gl-E. But restricted to I, ϕ, ϕ becomes 1 and hence we only have to prove
the statement for ϕ = 1. But then by (1) we have I B = T = T ′ = B′.

(3) In case ϕ 6= 1, I unglue [ϕ 7→ w′]u : A and

I ` unglue [ϕ 7→ w]u = unglue [ϕ 7→ w′]u : A (7.13)

are immediate by definition. Using the Expansion Lemma (and the reduction
I ` unglue [ϕ 7→ w′]u �s w

′.1u : A for ϕ = 1) we obtain I, ϕ unglue [ϕ 7→
w′]u = w′.1u : A, which also shows I unglue [ϕ 7→ w′]u : A as well as (7.13)
in case ϕ = 1.

(4) In case ϕ 6= 1, this is by definition. For ϕ = 1 we have

I unglue [ϕ 7→ w]u = w.1u = w.1u′ = unglue [ϕ 7→ w]u′ : A.

(5) Let us write b for glue [ϕ 7→ t] a, and b′ for glue [ϕ 7→ t′] a′. We first
show I b : B and I, ϕ b = t : B (similarly for b′).

In case ϕ = 1, I ` b �s t : T so by the Expansion Lemma I b : T and
I b = t : T , and hence also I b : B and I b = t : B by (1). This also
proves (5b).

Let now ϕ be arbitrary; we claim

I unglue [ϕ 7→ w] b : A and I unglue [ϕ 7→ w] b = a : A

(and thus proving (5c)). We will apply the Expansion Lemma to do so; for
f : J → I let us analyze the reduct of (unglue [ϕ 7→ w] b)f :

(unglue [ϕ 7→ w] b)f↓ =
{
wf.1 bf if ϕf = 1,
af otherwise.

Note that, if ϕf = 1, we have as in the case for ϕ = 1, J bf = tf : Bf
and hence J wf.1 bf = wf.1 tf = af : Af . This ensures J (unglue [ϕ 7→
w] b)f↓ = (unglue [ϕ 7→ w] b)↓f : A, and thus the Expansion Lemma applies
and we obtain I unglue [ϕ 7→ w] b = (unglue [ϕ 7→ w] b)↓ : A; but as we have
seen in either case, ϕ = 1 or not, I (unglue [ϕ 7→ w] b)↓ = a : A proving the
claim.

7.4. Soundness 153

Let now be ϕ 6= 1, f : J → I, and J w′ = wf : Equiv Tf Af . We can use
the claim for Bf and Glue [ϕf 7→ (Tf,w′)]Af (which is forced equal to Bf
by (2)) and obtain both

J unglue [ϕf 7→ wf] bf = af : Af and J unglue [ϕf 7→ w′] bf = af : Af,

so the left-hand sides are equal; moreover, I, ϕ b : B (as in the case ϕ = 1),
and hence I b : B. Likewise one shows I b′ : B.

It remains to show I b = b′ : B. If ϕ = 1, we already showed I b = t : T
and I b′ = t′ : T , so the claim follows from I t = t′ : T and I T = B.
Let us now assume ϕ 6= 1. We immediately get I, ϕ b = t = t′ = b′ : B as
for ϕ = 1. Moreover, we showed above that I unglue [ϕ 7→ w] b = a : A and
I unglue [ϕ 7→ w] b′ = a′ : A. Hence we obtain

I unglue [ϕ 7→ w] b = unglue [ϕ 7→ w] b′ : A

from I a = a′ : A.
(6) In case ϕ = 1, this follows from (5b). In case ϕ 6= 1, we have to show

I unglue [ϕ 7→ w]u = unglue [ϕ 7→ w] (glue [ϕ 7→ u](unglue [ϕ 7→ w]u)) : A
and I, ϕ u = glue [ϕ 7→ u](unglue [ϕ 7→ w]u) : T.

The former is an instance of (5c); the latter follows from (5b).

Lemma 7.4.17. Let B be Glue [ϕ 7→ (T,w)]A and suppose I B is derived
via Gl-C, then also I, ϕ T and the derivations of I, ϕ T are all proper
sub-derivations of I B (and hence shorter).

Proof. We have the proper sub-derivations I, ϕ B. For each f : J → I with
ϕf = 1, we have that Bf is non-introduced with reduct Tf so the derivation
of J Bf has a derivation of J Tf as sub-derivation according to Ni-C.

For the next proof we need a small syntactic observation. Given Γ ` α : F
irreducible, there is an associated substitution ᾱ : Γα → Γ where Γα skips the
names of α and applies a corresponding ᾱ to the types and restrictions (e.g.,
if Γ is i : I, x : A, j : I, ϕ and α is (i = 0), then Γα is x : A(i0), j : I, ϕ(i0)).
Since αᾱ = 1 we even have ᾱ : Γα → Γ, α. The latter has an inverse (w.r.t.
judgmental equality) given by the projection p : Γ, α→ Γα (i.e., p assigns each
variable in Γα to itself): in the context Γ, α, ᾱp is the identity, and pᾱ is the
identity since the variables in Γα are not changed by ᾱ.
Remark 7.4.18. We can use the above observation to show that the condition
I, ϕ ` J in the definition of I, ϕ ` J (in Section 7.3) already follows from
the other, i.e., J ` J f for all f : J → I, ϕ: We have to show I, α ` J
for each irreducible α ≤ ϕ. But we have Iα ` J ᾱ by the assumption and
ᾱ : Iα → I, ϕ, and hence Iα ` J ᾱ. Substituting along p : I, α → Iα yields
I, α ` J .

Theorem 7.4.19. Compositions are computable, i.e., for ϕ ∈ F(I) and i /∈
dom(I):

154 Chapter 7. Canonicity for Cubical Type Theory

1.
I, i A I, i, ϕ u : A I u0 : A(i0)[ϕ 7→ u(i0)]

I compiA [ϕ 7→ u]u0 : A(i1)[ϕ 7→ u(i1)]
I compiA [ϕ 7→ u]u0 = (compiA [ϕ 7→ u]u0)↓ : A(i1)

2.
I, i A I, i, ϕ u = v : A I u0 = v0 : A(i0)[ϕ 7→ u(i0)]

I compiA [ϕ 7→ u]u0 = compiA [ϕ 7→ v] v0 : A(i1)

3.
I, i A = B I, i, ϕ u : A I u0 : A(i0)[ϕ 7→ u(i0)]

I compiA [ϕ 7→ u]u0 = compiB [ϕ 7→ u]u0 : A(i1)

Proof. By simultaneous induction on I, i A and I, i A = B. Let us
abbreviate compiA [ϕ 7→ u]u0 by u1, and compiA [ϕ 7→ v] v0 by v1. The
second conclusion of (1) holds since in each case we will use the Expansion
Lemma and in particular also prove I u1↓ : A(i1).

Let us first make some preliminary remarks. Given the induction hypoth-
esis holds for I, i A we also know that filling operations are admissible for
I, i A, i.e.:

I, i A I, i, ϕ u : A I u0 : A(i0)[ϕ 7→ u(i0)]
I, i filliA [ϕ 7→ u]u0 : A[ϕ 7→ u, (i = 1) 7→ u1]

(7.14)

To see this, recall the explicit definition of filling

filliA [ϕ 7→ u]u0 = compj A(i/i ∧ j) [ϕ 7→ u(i/i ∧ j), (i = 0) 7→ u0]u0

where j is fresh. The derivation of I, i, j A(i/i ∧ j) isn’t higher than the
derivation of I, i A so we have to check, with u′ = [ϕ u(i/i ∧ j), (i = 0) u0]
and A′ = A(i/i ∧ j),

I, i, j, ϕ ∨ (i = 0) u′ : A′ and I, i, ϕ ∨ (i = 0) u′(j0) = u0 : A(i0). (7.15)

To check the former, we have to show

I, i, j, ϕ ∧ (i = 0) u(i/i ∧ j) = u0 : A′

in order to apply Lemma 7.4.14. So let f : J → I, i, j with ϕf = 1 and f(i) = 0;
then as ϕ doesn’t contain i and j, also ϕ(f − i, j) = 1 for f − i, j : J → I being
the restriction of f , so by assumption J u(i0)(f − i, j) = u0(f − i, j) :
A(i0)(f − i, j). Clearly, (i0)(f − i, j) = (i/i ∧ j)f so the claim follows.

Let us now check the right-hand side equation of (7.15): by virtue of
Lemma 7.4.15 we have to check the equation in the contexts I, i, ϕ and I, i, (i =
0); but I, i, ϕ u′(j0) = u(i0) = u0 : A(i0) and I, i, (i = 0) u′(j0) = u0 :
A(i0) by Lemma 7.4.14.

And likewise the filling operation preserves equality.

Case N-C. First, we prove that

I, ϕ, i : I ` u = u0 : N. (7.16)

7.4. Soundness 155

To show this, it is enough to prove I, α, i : I ` u = u0 : N for each α ≤ ϕ
irreducible. Let ᾱ : Iα → I be the associated face substitution. We have
Iα, i u(ᾱ, i/i) : N and also Iα u(ᾱ, i/0) = u0ᾱ : N since ϕᾱ = 1. By
discreteness of N (Lemma 7.4.12),

Iα, i u(ᾱ, i/i) = u0ᾱ : N,

therefore Iα, i ` u(ᾱ, i/i) = u0ᾱ : N, i.e., Iα, i ` uᾱ = u0ᾱ : N with ᾱ
considered as substitution Iα, i→ I, i and u0 weakened to I, i. Hence I, α, i :
I ` u = u0 : N by the observation preceding the statement of the theorem.

Second, we prove that

I, ϕ u(i1) = u0 : N. (7.17)

I, ϕ ` u(i1) = u0 : N immediately follows from (7.16). For f : J → I with
ϕf = 1 we have to show J u(i1)f = u0f : N; since ϕf = 1 we get J
u(i0)f = u0f : N by assumption, i.e., J u(f, i/j)(j0) = u0(f, i/j)(j0) : N
(where u0 is weakened to I, j and j fresh). By discreteness of N, we obtain
J, j u(f, i/j) = u0(f, i/j) : N and hence J u(f, i/1) = u0(f, i/1) : N, i.e.,
J u(i1)f = u0f : N.

We now prove the statements simultaneously by a side induction on I
u0 : N and I u0 = v0 : N.

Subcase I 0 : N. By (7.16) it follows that I ` u1 �s 0 : N, and hence
I u1 : N and I u1 = 0 : N by the Expansion Lemma. Thus also I, ϕ
u1 = u(i1) : N by (7.17).

Subcase I Su′0 : N from I u′0 : N with u0 = Su′0. By (7.16) it follows
that

I ` u1 �s S(compi N [ϕ 7→ predu]u′0) : N.

From I, ϕ Su′0 = u(i0) : N we get I, ϕ u′0 = pred(Su′0) = predu(i0) : N
using Lemma 7.4.10 and thus by SIH, I compi N [ϕ 7→ predu]u′0 : N[ϕ 7→
(predu)(i1)]; hence I u1 : N and I u1 = S(compi N [ϕ 7→ predu]u′0) : N by
the Expansion Lemma. Thus also

I, ϕ u1 = S(predu(i1)) = S(pred(Su′0)) = Su′0 = u(i1) : N

using (7.17).
Subcase u0 is non-introduced. We use the Expansion Lemma: for each

f : J → I
u1f↓ = compj N [ϕf 7→ u(f, i/j)] (u0f↓)

the right-hand side is computable by SIH, and this results in a compatible
family of reducts by SIH, since we have K u0f↓g = u0fg↓ : N. Thus we get
I u1 : N and I u1 = u1↓ : N. By SIH, I, ϕ u1↓ = u(i1) : N and thus also
I, ϕ u1 = u(i1) : N.

Subcase I 0 = 0 : N. Like above we get that I u1 = 0 = v1 : N.
Subcase I Su′0 = Sv′0 : N from I u′0 = v′0 : N. Follows from the SIH

I compi N [ϕ 7→ predu]u′0 = compi N [ϕ 7→ pred v] v′0 : N like above.

156 Chapter 7. Canonicity for Cubical Type Theory

Subcase I u0 = v0 : N and u0 or v0 is non-introduced. We have to show
J u1f↓ = v1f↓ : N for f : J → I. We have J u0f↓ = v0f↓ : N with a
shorter derivation, thus by SIH

J compj N [ϕf 7→ u(f, i/j)] (u0f↓) = compj N [ϕf 7→ v(f, i/j)] (v0f↓) : N

which is what we had to show.
Case Pi-C. Let us write (x : A) → B for the type under consideration.

(1) In view of the Expansion Lemma, the reduction rule for composition at
Π-types (which is closed under substitution), and Lemma 7.4.8 (2) and (5), it
suffices to show

I, x : A(i1) |= compiB(x/x̄) [ϕ 7→ u x̄] (u0 x̄(i0)) : B(i1), and (7.18)
I, x : A(i1), ϕ |= compiB(x/x̄) [ϕ 7→ u x̄] (u0 x̄(i0)) = u(i1)x : B(i1), (7.19)

where x′ = filliA(i/1− i) []x and x̄ = x′(i/1− i). By IH, we get I, x : A(i1), i :
I |= x̄ : A and I, x : A(i1) |= x̄(i1) = x : A(i1), i.e.,

I, x : A(i1), i : I |= filliA(i/1− i) []x : A(i/1− i), and (7.20)
I, x : A(i1) |= (filliA(i/1− i) []x)(i0) = x : A(i1). (7.21)

To see (7.20), let J (f, x/a) = (f, x/b) : I, x : A(i1), i.e., f : J → I and
J a = b : A(i1)f ; for j fresh, we have J, j A(f, i/1 − j) (note that
(i1)f = (f, i/1− j)(j0)) and we get

J, j fillj A(f, i/1− j) [] a = fillj A(f, i/1− j) [] b : A(f, i/1− j)

by IH, i.e., J, j x′(f, x/a, i/j) = x′(f, x/a, i/j) : A(f, i/1− j), and hence for
r ∈ I(J)

J x′(f, x/a, i/r) = x′(f, x/b, i/r) : (A(i/1− i))(f, x/a, i/r).

Thus we get I, x : A(i1) |= u0 x̄(i0) : B(i0)(x/x̄(i0)), I, x : A(i1), ϕ, i : I |=
u x̄ : B(x/x̄), and

I, x : A(i1), ϕ |= u0 x̄(i0) = u(i0) x̄(i0) = (u x̄)(i0) : B(i0)(x/x̄(i0)).

And hence again by IH, we obtain (7.18) and (7.19).
(2) Let f : J → I and J a : A(f, i/1). Then J, j ā : A(f, i/j) as above

and we have to show

J compj B(f, x/ā, i/j) [ϕf 7→ u(f, i/j) ā] (u0f ā)
= compj B(f, x/ā, i/j) [ϕf 7→ v(f, i/j) ā] (v0f ā) :

B(f, x/ā(i1), i/1). (7.22)

But this follows directly from the IH for J, j B(f, x/ā, i/j).

7.4. Soundness 157

Case Si-C. Let us write (x : A) × B for the type under consideration.
(1) We have

I, i, ϕ u.1 : A and I u0.1 : A[ϕ 7→ u.1]

so by IH,

I, i filliA [ϕ 7→ u.1] (u0.1) : A[ϕ 7→ u.1, (i = 0) 7→ u0.1].

Let us call the above filler w. Thus we get I, i B(x/w),

I, i, ϕ B(x/u.1) = B(x/w) and I B(x/u0.1) = (B(x/w))(i0)

and hence

I, i, ϕ u.2 : B(x/w) and I u0.1 : (B(x/w))(i0)[ϕ 7→ u.2].

The IH yields

I compiB(x/w) [ϕ 7→ u.2] (u0.2) : (B(x/w))(i1)[ϕ 7→ u.2(i1)];

let us write w′ for the above. By the reduction rules for composition in Σ-types
we get I ` u1 �s (w(i1), w′) : (x : A(i1)) × B(i1) and hence the Expansion
Lemma yields

I u1 = (w(i1), w′) : (x : A(i1))×B(i1).

Which in turn implies the equality

I, ϕ u1 = (w(i1), w′) = (u.1(i1), u.2(i1)) = u(i1) : (x : A(i1))×B(i1).

The proof of (2) uses that all notions defining w and w′ preserve equality
(by IH), and thus I u1↓ = v1↓ : (x : A(i1))×B(i1).

Case Pa-C. Let us write PathAa0 a1 for the type under consideration. We
obtain (for j fresh)

I, j compiA [(j = 0) 7→ a0, (j = 1) 7→ a1, ϕ 7→ u j] (u0 j) :
A(i1)[(j = 0) 7→ a0(i1), (j = 1) 7→ a1(i1), ϕ 7→ u(i1) j] (7.23)

by the IH. Using the Expansion Lemma, the reduction rule for composition at
Path-types, and Lemma 7.4.13 (2) this yields

I u1 : PathA(i1) ũ(j0) ũ(j1)[ϕ 7→ 〈j〉(u(i1) j)]

where ũ is the element in (7.23) and u1 is 〈j〉ũ. But I ũ(jb) = ab(i1) : A(i1),
so I u1 : PathA(i1) a0(i1) a1(i1). Moreover,

I, ϕ u1 = 〈j〉(u(i1) j) = u(i1) : PathA(i1) a0(i1) a1(i1)

by the correctness of the η-rule for paths (Lemma 7.4.13 (6)).

158 Chapter 7. Canonicity for Cubical Type Theory

Case Gl-C. To not confuse with our previous notations, we write ψ for the
face formula of u, and write B for Glue [ϕ 7→ (T,w)]A.

Thus we are given:

1 6= ϕ ∈ F(I, i) I, i A I, i, ϕ w : Equiv T A I, i, ϕ B

I, i B
Gl-C

and also I, i, ψ u : B and I u0 : B(i0)[ψ 7→ u(i0)]. Moreover we have
I, i, ϕ T with shorter derivations by Lemma 7.4.17. We have to show

(i) I u1 : B(i1), and

(ii) I, ψ u1 = u(i1) : B(i1).

We will be using the Expansion Lemma: let f : J → I and consider the reducts
of u1f :

u1f↓ =
{

compj Tf ′ [ψf 7→ uf ′] (u0f) if ϕf ′ = 1,
glue [ϕ(i1)f 7→ t1f] (a1f) otherwise,

with f ′ = (f, i/j), and t1 and a1 as in the corresponding reduction rule, i.e.:

a = unglue [ϕ 7→ w]u I, i, ψ

a0 = unglue [ϕ(i0) 7→ w(i0)]u0 I

δ = ∀i.ϕ I

a′1 = compiA [ψ 7→ a] a0 I

t′1 = compi T [ψ 7→ u]u0 I, δ

ω = presi w [ψ 7→ u]u0 I, δ

(t1, α) = equivw(i1) [δ 7→ (t′1, ω), ψ 7→ (u(i1), 〈j〉a′1)] a′1 I, ϕ(i1)
a1 = compj A(i1) [ϕ(i1) 7→ α j, ψ 7→ a(i1)] a′1 I

First, we have to check J u1f↓ : B(i1)f . In case ϕf ′ = 1 this immedi-
ately follows from the IH. In case ϕf ′ 6= 1, this follows from the IH and the
previous lemmas ensuring that notions involved in the definition of t1 and a1
preserve computability.

Second, we have to check J u1f↓ = u1↓f : B(i1)f . For this, the only
interesting case is when ϕf ′ = 1; then we have to check that:

J compj Tf ′ [ψf 7→ uf ′] (u0f) = glue [ϕ(i1)f 7→ t1f] (a1f) : B(i1)f (7.24)

Since all the involved notions commute with substitutions, we may (temporar-
ily) assume f = id and ϕ = 1 to simplify notation. Then also δ = 1 = ϕ(i1),
and hence (using the IH)

I t1 = t′1 = compi T [ψ 7→ u]u0 : T (i1),

so (7.24) follows from Lemma 7.4.16 (5b) and (1).

7.4. Soundness 159

So the Expansion Lemma yields (i) and I u1 = glue [ϕ(i1) 7→ t1] a1 :
B(i1). (ii) is checked similarly to what is done in [26, Appendix A] using the
IH. This proves (1) in this case; for (2) one uses that all notions for giving
a1 and t1 above preserve equality, and thus I u1↓ = v1↓ : B(i1) entailing
I u1 = v1 : B(i1).

Case U-C. We have

I ` compi U [ϕ 7→ u]u0 �s Glue [ϕ 7→ (u(i1), equivi u(i/1− i))]u : U

thus it is sufficient to prove that the right-hand side is computable, i.e.,

I 1 Glue [ϕ 7→ (u(i1), equivi u(i/1− i))]u0 : U

that is,
I 0 Glue [ϕ 7→ (u(i1), equivi u(i/1− i))]u0.

We have I 0 u0 so by Lemma 7.4.16 (1) it suffices to prove

I 0 equivi u(i/1− i) : Equiv u(i1)u0.

To see this recall that the definition of equivi u(i/1− i) is defined from com-
positions and filling operations for types I, i 0 u and I, i 0 u(i/1− i) using
operations we already have shown to preserve computability. But in this case
we have as IH, that these composition and filling operations are computable
since the derivations of I, i, ϕ 0 u and I, i, ϕ 0 u(i/1 − i) are less complex
than the derivation I 1 U since the level is smaller.

Case Ni-C. So we have J Af↓ for each f : J → I, i and J A↓f = Af↓
(all with a shorter derivation than I, i A). Note that by Lemma 7.3.10 (1),
we also have I, i A = A↓.

(1) We have to show J u1f : A(i1)f↓ for each f : J → I. It is enough
to show this for f being the identity; we do this using the Expansion Lemma.
Let f : J → I and j be fresh, f ′ = (f, i/j); we first show J u1f↓ : A↓(i1)f .
We have

J ` u1f � compj (Af ′↓) [ϕf 7→ uf ′]u0f : Af ′(j1)
hence also at type Af ′(j1)↓, and so, by IH (1) for J, j Af ′↓, we obtain
J u1f↓ : Af ′(j1)↓. But J Af ′(j1)↓ = A↓(i1)f , so J u1f↓ : A↓(i1)f .

Next, we have to show J u1↓f = u1f↓ : A↓(i1)f . Since J, j A↓f ′ =
Af ′↓ (with a shorter derivation) we get by IH (3), J u1↓f = u1f↓ : A↓f ′(j1)
what we had to show.

Thus we can apply the Expansion Lemma and obtain I u1 : A↓(i1) and
I u1 = u1↓ : A↓(i1), and hence also I u1 : A(i1) and I u1 = u1↓ : A(i1).
By IH, we also have I, ϕ u1 = u1↓ = u(i1) : A↓(i1) = A(i1).

(2) Like above, we obtain

I u1 = u1↓ : A↓(i1) and I v1 = v1↓ : A↓(i1).

But since the derivation of I, i A↓ is shorter, and u1↓ = compiA↓ [ϕ 7→ u]u0
and similarly for v1↓, the IH yields I u1↓ = v1↓ : A↓(i1), thus also I u1 =
v1 : A↓(i1), that is, I u1 = v1 : A(i1) since I, i A = A↓.

160 Chapter 7. Canonicity for Cubical Type Theory

It remains to show that composition preserves forced type equality (i.e., (3)
holds). The argument for the different cases is very similar, namely using that
the compositions on the left-hand and right-hand side of (3) are equal to their
respective reducts (by (1)) and then applying the IH for the reducts. We will
only present the case Ni-E.

Case Ni-E. Then A or B is non-introduced and I, i A↓ = B↓ with a
shorter derivation. Moreover, by (1) (if the type is non-introduced) or reflex-
ivity (if the type is introduced) we have

I compiA [ϕ 7→ u]u0 = compi (A↓) [ϕ 7→ u]u0 : A(i1), and
I compiB [ϕ 7→ u]u0 = compi (B↓) [ϕ 7→ u]u0 : B(i1),

but the right-hand sides are forced equal by IH.

Lemma 7.4.20. The rules for the universe U are sound:

1. Γ |= A : U⇒ Γ |= A

2. Γ |= A = B : U⇒ Γ |= A = B

Moreover, the rules reflecting the type formers in U are sound.

Proof. Of the first two statements let us only prove (2): given I σ = τ : Γ
we get I Aσ = Bτ : U; this must be a derivation of I 1 Aσ = Bτ : U and
hence we also have I 0 Aσ = Bτ .

The soundness of the rules reflecting the type formers in U is proved very
similar to proving the soundness of the type formers. Let us exemplify this by
showing soundness for Π-types in U: we are give Γ |= A : U and Γ, x : A |=
B : U, and want to show Γ |= (x : A) → B : U. Let I σ = τ : Γ, then
I Aσ = Aτ : U, so, as above, I 0 Aσ = Aτ ; it is enough to show

J 0 B(σf, x/u) = B(τf, x/v) (7.25)

for J u = v : Aσf with f : J → I. Then J (σf, x/u) = (τf, x/v) : Γ, x : A,
hence J B(σf, x/u) = B(τf, x/v) : U and hence (7.25).

Proof of Soundness (Theorem 7.4.3). By induction on the derivation Γ ` J .
We have already seen above that most of the rules are sound. Let us

now look at the missing rules. Concerning basic type theory, the forma-
tion and introduction rules for N are immediate; its elimination rule and
definitional equality follow from the “local” soundness from Lemma 7.4.10
as follows. Suppose Γ |= u : N, Γ, x : N |= C, Γ |= z : C(x/0), and
Γ |= s : (x : N) → C → C(x/Sx). For I σ = τ : N we get by
Lemma 7.4.10 (2)

I natrecuσ zσ sσ = natrecuτ zτ sτ : C(σ, x/uσ).

7.4. Soundness 161

(Hence Γ |= natrecu z s : C(x/u).) Concerning, the definitional equality, if,
say, u was of the form S v, then, Lemma 7.4.10 (1) gives

I natrec (S vσ) zσ sσ = natrec (S vτ) zτ sτ
= (natrec (S vτ) zτ sτ)↓ : C(σ, x/uσ).

and (natrec (S vτ) zτ sτ)↓ is sτ vτ (natrec vτ zτ sτ), proving

Γ |= natrec (S v) z s = s v (natrec v z s) : C(x/S v);

similarly, the soundness of the other definitional equality is established.
Let us now look at the composition operations: suppose Γ, i : I |= A,

Γ |= ϕ : F, Γ, ϕ, i : I |= u : A, and Γ |= u0 : A(i0)[ϕ 7→ u(i0)]. Further let
I σ = τ : Γ, then for j fresh, I, j σ′ = τ ′ : Γ, i : I where σ′ = (σ, i/j) and
τ ′ = (τ, i/j), hence I, j Aσ′ = Aτ ′, ϕσ = ϕτ , I, j, ϕσ uσ′ = uτ ′ : Aσ′,
and I u0σ = u0τ : Aσ′(j0)[ϕσ 7→ uσ′(j0)]. By Theorem 7.4.19,

I compj (Aσ′) [ϕσ 7→ uσ′] (u0σ) = compj (Aτ ′) [ϕτ 7→ uτ ′] (u0τ) : Aσ′(j1)

and

I, ϕσ compj (Aσ′) [ϕσ 7→ uσ′] (u0σ) = uσ′(j1) = uτ ′(j1) : Aσ′(j1)

hence we showed Γ |= compiA [ϕ 7→ u]u0 : A(i1)[ϕ 7→ u(i1)]. Similarly one
can justify the congruence rule for composition.

The definitional equalities which hold for comp follow from the second
conclusion of Theorem 7.4.19 (1), i.e., that a composition is forced equal to its
reduct.

The remaining rules for systems follow from their “local” analogues in form
of Lemma 7.4.14; let us, say, suppose Γ |= ϕ1 ∨ · · · ∨ ϕn = 1 : F, Γ, ϕi |= Ai,
and Γ, ϕi ∧ ϕj |= Ai = Aj . For I σ = τ : Γ we get k with ϕkσ = ϕkτ = 1
like in the proof of Lemma 7.4.15 so, writing A for [ϕ1 A1, . . . , ϕn An],

I Aσ = Akσ = Akτ = Aτ

by Lemma 7.4.14 and using Γ, ϕk |= Ak, so Γ |= A. Likewise, if Γ |= ϕl = 1 : F
for some l, then I Aσ = Alσ = Alτ , showing Γ |= A = Al in this case. The
other rules concerning systems are justified similarly.

The soundness of the remaining rules concerning Glue follow similarly from
their “local” version in Lemma 7.4.16.

Corollary 7.4.21 (Canonicity). If I is a context of the form i1 : I, . . . , ik : I
and I ` u : N, then I ` u = n : N for a unique n ∈ N.

Proof. By Soundness, I |= u : N hence I u : N, so I u = n : N for some
n ∈ N by Lemma 7.4.11, and thus also I ` u = n : N. The uniqueness follows
since I ` n = m : N yields I n = m : N which is only the case for n = m.

Corollary 7.4.22 (Consistency). Cubical type theory is consistent, i.e., there
is a type in the empty context which is not inhabited.

162 Chapter 7. Canonicity for Cubical Type Theory

Proof. Consider the type Path N 0 1 and suppose there is a u with ` u :
Path N 0 1. Hence we get i : I ` u i : N, as well as ` u 0 = 0 : N and
` u 1 = 1 : N. By Canonicity, we get n ∈ N with i : I ` u i = n : N, and
hence (by substitution) ` u 0 = n : N and ` u 1 = n : N, so ` 0 = 1 : N,
contradicting the uniqueness in Corollary 7.4.21.

Remark 7.4.23. One could also extend cubical type theory with an empty type
N0 whose forcing relation is empty; consistency for this extension is then an
immediate consequence of the corresponding Soundness Theorem.

7.5 Extending with the Circle
In this section we sketch how the proof of canonicity can be extended to the
system where a circle S1 is added; the extension with other spheres is done
analogously.

First, we generalize Path-types to dependent path types PathiAuv (imight
now appear in A); this extension is straightforward, e.g., the β-reduction rule
for paths now reads

Γ, i : I ` A Γ, i : I ` t : A Γ ` r : I
Γ ` (〈i〉t) r � t(i/r) : A(i/r)

and likewise the computability predicates and relations are easily adapted.
Next, we have to extend the reduction relation as follows to incorporate

the circle.

Γ `
Γ ` loop 0 � base : S1

Γ ` loop 1 � base : S1

Γ, i : I ` u : S1

Γ ` compi S1 [1 7→ u]u(i0) � u(i1) : S1

(For simplicity, we will use compi S1 instead of adding yet another constructor
hcompi as was done in in [26].)

Given Γ, x : S1 ` C, Γ ` b : C(x/base) and Γ ` l : Pathi C(x/ loop i) b b we
also add the reduction rules for the elimination

Γ ` S1-elimx baseC b l � b : C(x/base)
Γ ` S1-elimx (loop r)C b l � l r : C(x/ loop r)

where Γ ` r 6= 1 : I, and moreover for Γ ` ϕ 6= 1 : F,

Γ ` S1-elimx (compi S1 [ϕ 7→ u]u0)C b l �
compi C(x/v) [ϕ 7→ u′]u′0 : C(x/compi S1 [ϕ 7→ u]u0)

where v = filli S1 [ϕ 7→ u]u0, u′ = S1-elimx uC b l, u′0 = S1-elimx u0 C b l, and
we assumed i /∈ dom Γ (otherwise rename i).

7.6. Conclusion 163

Furthermore, if Γ ` t � t′ : S1, then

Γ ` S1-elimx t C b l � S1-elimx t′ C b l : C(x/t′).

Consequently, we also call expressions introduced if they are of the form
base, loop r with r /∈ {0, 1}, and compi S1 [ϕ 7→ u]u0 with ϕ 6= 1.

Next, the computability predicates and relations are adapted as follows:
I ` S1 and I ` S1 = S1. I ` u : S1 and I u = v : S1 are defined
simultaneously (similarly as for N):

I ` base : S1
r ∈ I(I)− {0, 1} I ` loop 0 : S1 I ` loop 1 : S1

I ` loop r : S1

1 6= ϕ ∈ F(I)
I, i, ϕ ` u : S1 I ` u0 = u(i0) : S1 I, ϕ ` compi S1 [ϕ 7→ u]u0 : S1

I ` compi S1 [ϕ 7→ u]u0 : S1

u n.i. ∀f : J → I(uf !S
1

& J ` uf↓S1
: S1)

∀f : J → I∀g : K → J(K ` uf↓g = ufg↓ : S1)
I ` u : S1

Note, the (admissible) two last premises in the case for loop are there to not
increase the height of the derivation when doing a substitution (Lemma 7.3.6);
similarly for the last premise in the rule for composition. The relation I `
u = v : S1 is defined analogously, that is, by the usual congruence rules and a
clause for when u or v is non-introduced as we have it for N.

7.6 Conclusion
We have shown canonicity for cubical type theory [26] and its extension with
the circle. This establishes that the judgmental equalities of the theory are
sufficient to compute closed naturals to numerals; indeed, we have even given
a deterministic reduction relation to do so. It should be noted that we could
have also worked with the corresponding untyped reduction relation A � B
and then take I ` A � B to mean I ` A = B and A � B etc.

To prove canonicity we devised computability predicates (and relations)
which, from a set-theoretic perspective, are constructed using the least fixpoint
of a suitable operator. It is unlikely that this result is optimal in terms of proof-
theoretic strength; we conjecture that it is possible to modify the argument to
only require the existence of a fixpoint of a suitably modified operator (and
not necessarily its least fixpoint); this should be related to how canonicity is
established in [7].

We expect that the present work can be extended to get a normalization
theorem and to establish decidability of type checking for cubical type theory
(and proving its implementation2 correct). One new aspect of such an adaption

2Available at https://github.com/mortberg/cubicaltt.

https://github.com/mortberg/cubicaltt

164 Chapter 7. Canonicity for Cubical Type Theory

is to generalize the computability predicates and relations to expressions in
any contexts in which we get new introduced expressions given by systems;
moreover, we will have to consider reductions in such general contexts as well
which has to ensure that, say, variables of path-types compute to the right
endpoints.

Another direction of future research is to investigate canonicity of various
extensions of cubical type theory, especially adding resizing rules.
Acknowledgments. I thank Carlo Angiuli, Thierry Coquand, Robert Harper,
and Bassel Mannaa for discussions about this work.

Bibliography

[1] Andreas Abel, Thierry Coquand, and Bassel Mannaa, On the decidability
of conversion in type theory, Abstract for TYPES 2016, 2016.

[2] Andreas Abel and Gabriel Scherer, On irrelevance and algorithmic equal-
ity in predicative type theory, Logical Methods in Computer Science 8
(2012), no. 1, 1–36, TYPES’10 special issue.

[3] Peter Aczel, On relating type theories and set theories, Types for Proofs
and Programs (T. Altenkirch, B. Reus, and W. Naraschewski, eds.), Lec-
ture Notes in Computer Science, vol. 1657, Springer Verlag, Berlin, Hei-
delberg, New York, 1999, pp. 1–18.

[4] Thorsten Altenkirch, Extensional equality in intensional type theory, 14th
Symposium on Logic in Computer Science, 1999, pp. 412–420.

[5] Thorsten Altenkirch and Ambrus Kaposi, Towards cubical type theory,
Preprint, 2014.

[6] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra, Observa-
tional equality, now!, PLPV ’07: Proceedings of the 2007 workshop
on Programming languages meets program verification (New York, NY,
USA), ACM, 2007, pp. 57–68.

[7] Carlo Angiuli and Robert Harper, Computational higher type theory
II: Dependent cubical realizability, Preprint arXiv:1606.09638v1 [cs.LO],
2016.

[8] Carlo Angiuli, Robert Harper, and Todd Wilson, Computational higher
type theory I: Abstract cubical realizability, Preprint arXiv:1604.08873v1
[cs.LO], 2016.

[9] Steve Awodey and Michael A. Warren, Homotopy theoretic models of iden-
tity types, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 1, 45–55.

[10] Raymond Balbes and Philip Dwinger, Distributive lattices, University of
Missouri Press, 1975.

166 Bibliography

[11] Bruno Barras, Thierry Coquand, and Simon Huber, A generalization of
the Takeuti-Gandy interpretation, Mathematical Structures in Computer
Science 25 (2015), 1071–1099.

[12] Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin, A
presheaf model of parametric type theory, Electronic Notes in Theoreti-
cal Computer Science 319 (2015), 67–82.

[13] Jean-Philippe Bernardy and Guilhem Moulin, Type-theory in color,
ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25–27, 2013, pp. 61–72.

[14] Marc Bezem and Thierry Coquand, A Kripke model for simplicial sets,
Theoretical Computer Science 574 (2015), 86–91.

[15] Marc Bezem, Thierry Coquand, and Simon Huber, A model of type the-
ory in cubical sets, 19th International Conference on Types for Proofs
and Programs (TYPES 2013) (Dagstuhl, Germany) (Ralph Matthes and
Aleksy Schubert, eds.), Leibniz International Proceedings in Informatics
(LIPIcs), vol. 26, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2014,
pp. 107–128.

[16] Marc Bezem, Thierry Coquand, and Erik Parmann, Non-constructivity in
Kan simplicial sets, 13th International Conference on Typed Lambda Cal-
culi and Applications (TLCA 2015) (Dagstuhl, Germany) (Thorsten Al-
tenkirch, ed.), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 38, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2015, pp. 92–
106.

[17] Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas
Spitters, and Andrea Vezzosi, Guarded cubical type theory: Path equal-
ity for guarded recursion, 25th EACSL Annual Conference on Computer
Science Logic (CSL 2016) (Dagstuhl, Germany) (Jean-Marc Talbot and
Laurent Regnier, eds.), Leibniz International Proceedings in Informatics
(LIPIcs), vol. 62, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016,
pp. 23:1–23:17.

[18] Erret Bishop and Douglas S. Bridges, Constructive analysis, Grundlehren
der mathematischen Wissenschaften, vol. 279, Springer Verlag, Berlin,
Heidelberg, New York, 1985.

[19] Ronald Brown, Philip J. Higgins, and Rafael Sivera, Nonabelian algebraic
topology: Filtered spaces, crossed complexes, cubical homotopy groupoids,
EMS Tracts in Mathematics, vol. 15, European Mathematical Society
(EMS), Zürich, 2011.

[20] Guillaume Brunerie, On the homotopy groups of spheres in homotopy type
theory, Ph.D. thesis, Université de Nice, 2016.

Bibliography 167

[21] Guillaume Brunerie and Daniel R. Licata, A cubical infinite-dimensional
type theory, Slides of a talk at Oxford Homotopy Type Theory Workshop,
November 2014.

[22] John Cartmell, Generalised algebraic theories and contextual categories,
Annals of Pure and Applied Logic 32 (1986), 209–243.

[23] Alonzo Church, A formulation of the simple theory of types, The Journal
of Symbolic Logic 5 (1949), no. 2, 56–68.

[24] Denis-Charles Cisinski, Univalent universes for elegant models of homo-
topy types, Preprint arXiv:1406.0058 [math.AT], May 2014.

[25] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg, Cu-
bical, https://github.com/simhu/cubical, 2013.

[26] , Cubical type theory: a constructive interpretation of the univa-
lence axiom, to appear in the proceedings of TYPES 2015, 2015.

[27] , Cubicaltt, https://github.com/mortberg/cubicaltt, 2015.

[28] Thierry Coquand, A property of contractible types, Unpublished note
available at http://www.cse.chalmers.se/~coquand/contr.pdf, De-
cember 2013.

[29] Thierry Coquand and Nils Anders Danielsson, Isomorphism is equality,
Indagationes Mathematicae 24 (2013), no. 4, 1105–1120.

[30] Thierry Coquand and Gérard Huet, The calculus of constructions, Infor-
mation and Computation 76 (1988), 95–129.

[31] Thierry Coquand and Bassel Mannaa, The independence of Markov’s
principle in type theory, 1st International Conference on Formal Struc-
tures for Computation and Deduction (FSCD 2016) (Dagstuhl, Germany)
(Delia Kesner and Brigitte Pientka, eds.), Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 52, Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2016, pp. 17:1–17:18.

[32] Nicolaas G. de Bruijn, The mathematical language AUTOMATH, its us-
age, and some of its extensions, Symposium on Automatic Demonstration
(Versailles, 1968), Lecture Notes in Mathematics, vol. 125, Springer Ver-
lag, Berlin, Heidelberg, New York, 1970, pp. 29–61.

[33] Simon Docherty, A model of type theory in cubical sets with connections,
Master’s thesis, Universiteit van Amsterdam, 2014.

[34] Peter Dybjer, Internal type theory, Lecture Notes in Computer Science,
Springer Verlag, Berlin, Heidelberg, New York, 1996, pp. 120–134.

[35] , A general formulation of simultaneous inductive-recursive defi-
nitions in type theory, The Journal of Symbolic Logic 65 (2000), no. 2,
525–549.

https://github.com/simhu/cubical
https://github.com/mortberg/cubicaltt
http://www.cse.chalmers.se/~coquand/contr.pdf

168 Bibliography

[36] Michael P. Fourman and Dana S. Scott, Sheaves and logic, Applications of
Sheaves (M. Fourman and D. Scott, eds.), Lecture Notes in Mathematics,
vol. 753, Springer Verlag, Berlin, Heidelberg, New York, 1979, pp. 302–
401.

[37] Nicola Gambino and Christian Sattler, Uniform fibrations and the Frobe-
nius condition, Preprint arXiv:1510.00669 [math.CT], October 2015.

[38] Richard Garner, Factorisation axioms for type theory, Notes for a talk
given at the Workshop “Identity Types – Topological and Categorical
Structure” (Uppsala, November 13-14, 2006), available at http://comp.
mq.edu.au/~rgarner/Papers/Uppsala.pdf, 2006.

[39] , Understanding the small object argument, Applied Categorical
Structures 17 (2009), no. 3, 247–285.

[40] Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress
in Mathematics, no. 174, Birkhäuser Basel, 1999.

[41] Georges Gonthier, Formal proof–the four-color theorem, Notices of the
AMS 55 (2008), no. 11, 1382–1393.

[42] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Rus-
sell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey
Solovyev, Enrico Tassi, and Laurent Théry, A machine-checked proof of
the odd order theorem, ITP 2013, 4th Conference on Interactive Theorem
Proving (Rennes, France) (Sandrine Blazy, Christine Paulin, and David
Pichardie, eds.), Lecture Notes in Computer Science, vol. 7998, Springer,
July 2013, pp. 163–179.

[43] Marco Grandis and Luca Mauri, Cubical sets and their site, Theory and
Applications of Categories 11 (2003), no. 8, 185–211.

[44] Alexandre Grothendieck, Pursuing stacks, Manuscript, 1983.

[45] Michael Hedberg, A coherence theorem for Martin-Löf’s type theory, Jour-
nal of Functional Programming 8 (1998), no. 04, 413–436.

[46] Martin Hofmann, Extensional concepts in intensional type theory, Ph.D.
thesis, University of Edinburgh, 1995.

[47] , Syntax and semantics of dependent types, Semantics and logics of
computation (A.M. Pitts and P. Dybjer, eds.), Publ. Newton Inst., vol. 14,
Cambridge University Press, Cambridge, 1997, Papers from the Summer
School held at the University of Cambridge, Cambridge, September 1995,
pp. 79–130.

[48] Martin Hofmann and Thomas Streicher, Lifting Grothendieck universes,
Unpublished Note.

http://comp.mq.edu.au/~rgarner/Papers/Uppsala.pdf
http://comp.mq.edu.au/~rgarner/Papers/Uppsala.pdf

Bibliography 169

[49] , The groupoid interpretation of type theory, Twenty-five years of
constructive type theory (Venice, 1995), Oxford Logic Guides, vol. 36,
Oxford University Press, New York, 1998, pp. 83–111.

[50] Simon Huber, A model of type theory in cubical sets, Licentiate thesis,
University of Gothenburg, 2015.

[51] , Canonicity for cubical type theory, Preprint arXiv:1607.04156v1
[cs.LO], July 2016.

[52] John A. Kalman, Lattices with involution, Transactions of the American
Mathematical Society 87 (1958), 485–491.

[53] Daniel M. Kan, Abstract homotopy. I, Proceedings of the National
Academy of Sciences of the United States of America 41 (1955), no. 12,
1092–1096.

[54] Chris Kapulkin and Peter LeFanu Lumsdaine, The simplicial model
of univalent foundations (after Voevodsky), Preprint arXiv:1211.2851v4
[math.LO], November 2012.

[55] François Lamarche, A proposal about foundations I, Manuscript, 1991.

[56] Daniel R. Licata and Guillaume Brunerie, A cubical approach to synthetic
homotopy theory, 30th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2015, Kyoto, Japan, July 2015, pp. 92–103.

[57] Peter LeFanu Lumsdaine, Higher categories from type theories, Ph.D. the-
sis, Carnegie Mellon University, 2010.

[58] , Weak ω-categories from intensional type theory, Logical Methods
in Computer Science 6 (2010), no. 3:24, 1–19.

[59] Per Martin-Löf, An intiutionistic theory of types: Predicative part, Logic
Colloquium ’73 (H. E. Rose and J. Shepherdson, eds.), North–Holland,
Amsterdam, 1975, pp. 73–118.

[60] , Constructive mathematics and computer programming, Logic,
Methodology and Philosophy of Science, VI, 1982, pp. 153–175.

[61] , Intuitionistic type theory, Bibliopolis, 1984.

[62] , An intuitionistic theory of types, Twenty-five years of constructive
type theory (Venice, 1995), Oxford Logic Guides, vol. 36, Oxford Univ.
Press, New York, 1998, pp. 127–172.

[63] J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Math-
ematical Studies, vol. 11, Van Nostrand, 1967.

[64] Guilhem Moulin, Internalizing parametricity, Ph.D. thesis, Chalmers Uni-
versity of Technology, 2016.

170 Bibliography

[65] Thomas Nikolaus, Algebraic models for higher categories, Indagationes
Mathematicae 21 (2011), no. 1–2, 52–75.

[66] Ian Orton and Andrew M. Pitts, Axioms for modelling cubical type the-
ory in a topos, 25th EACSL Annual Conference on Computer Science
Logic (CSL 2016) (Dagstuhl, Germany) (Jean-Marc Talbot and Laurent
Regnier, eds.), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 62, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016, pp. 24:1–
24:19.

[67] Erik Parmann, Case studies in constructive mathematics, Ph.D. thesis,
University of Bergen, 2016.

[68] Christine Paulin-Mohring, Inductive definitions in the system Coq - rules
and properties, Proceedings of the conference Typed Lambda Calculi and
Applications (Marc Bezem and Jan Friso Groote, eds.), Lecture Notes in
Computer Science, no. 664, 1993.

[69] Andrew M. Pitts, An equivalent presentation of the Bezem-Coquand-
Huber category of cubical sets, Preprint arXiv:1401.7807 [cs.LO], Decem-
ber 2013.

[70] , Nominal sets: Names and symmetry in computer science, Cam-
bridge Tracts in Theoretical Computer Science, vol. 57, Cambridge Uni-
versity Press, 2013.

[71] , Nominal presentation of cubical sets models of type theory, 20th
International Conference on Types for Proofs and Programs (TYPES
2014) (Dagstuhl, Germany) (H. Herbelin, P. Letouzey, and M. Sozeau,
eds.), Leibniz International Proceedings in Informatics (LIPIcs), vol. 39,
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2015, pp. 202–220.

[72] Andrew Polonsky, Extensionality of lambda-*, 20th International Confer-
ence on Types for Proofs and Programs (TYPES 2014) (Dagstuhl, Ger-
many) (H. Herbelin, P. Letouzey, and M. Sozeau, eds.), Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 39, Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2015, pp. 221–250.

[73] , Internalization of extensional equality, Preprint
arXiv:1401.1148v3 [cs.LO], January 2015.

[74] Ross Street, Cosmoi of internal categories, Transactions of the American
Mathematical Society 258 (1980), no. 2, 271–318.

[75] Thomas Streicher, Semantics of type theory, Progress in Theoretical Com-
puter Science, Birkhäuser Basel, 1991.

[76] , Identity types vs. weak ω-groupoids, Talk given at the Work-
shop “Identity Types – Topological and Categorical Structure” (Uppsala,
November 13-14, 2006), 2006.

Bibliography 171

[77] Andrew Swan, An algebraic weak factorisation system on 01-substitution
sets: A constructive proof, Preprint arXiv:1409.1829 [math.LO], Septem-
ber 2014.

[78] WilliamW. Tait, Intensional interpretations of functionals of finite type I,
The Journal of Symbolic Logic 32 (1967), no. 2, 198–212.

[79] The Univalent Foundations Program, Homotopy type theory: Univalent
foundations of mathematics, http://homotopytypetheory.org/book,
Institute for Advanced Study, 2013.

[80] Benno van den Berg and Richard Garner, Types are weak ∞-groupoids,
Proceedings of the London Mathematical Society 102 (2011), no. 2, 370–
394.

[81] , Topological and simplicial models of identity types, Transactions
of the ACM on Computational Logic 13 (2012), no. 1, 3:1–3:44.

[82] Vladimir Voevodsky, Notes on type systems, Unpublished note available
at https://github.com/vladimirias/old_notes_on_type_systems/
raw/master/old_notes_on_type%20systems.pdf (retrieved August 3,
2016), labelled “Started September 8, 2009”.

[83] , Foundations of mathematics and homotopy theory, March 2006,
Talk given at the IAS, available at https://video.ias.edu/node/68.

[84] , Notes on homotopy λ-calculus, Unpublished note available
at https://github.com/vladimirias/2006_03_Homotopy_lambda_
calculus/raw/master/homotopy_lambda_calculus_Mar_5_2006.pdf
(retrieved August 3, 2016), 2006.

[85] , Univalent foundations project, A modified version of an NSF
grant application, October 2010.

[86] , Univalent foundations, Plenary lecture at WoLLIC, May 18,
2011.

[87] , The equivalence axiom and univalent models of type theory. (Talk
at CMU on February 4, 2010), Preprint arXiv:1402.5556 [math.LO], 2014.

[88] , An experimental library of formalized mathematics based on the
univalent foundations, Mathematical Structures in Computer Science 25
(2015), 1278–1294.

[89] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al., UniMath:
Univalent Mathematics, Available at https://github.com/UniMath.

http://homotopytypetheory.org/book
https://github.com/vladimirias/old_notes_on_type_systems/raw/master/old_notes_on_type%20systems.pdf
https://github.com/vladimirias/old_notes_on_type_systems/raw/master/old_notes_on_type%20systems.pdf
https://video.ias.edu/node/68
https://github.com/vladimirias/2006_03_Homotopy_lambda_calculus/raw/master/homotopy_lambda_calculus_Mar_5_2006.pdf
https://github.com/vladimirias/2006_03_Homotopy_lambda_calculus/raw/master/homotopy_lambda_calculus_Mar_5_2006.pdf
https://github.com/UniMath

	Introduction
	Intuitionistic Type Theory
	Equality
	Homotopy Theory and Type Theory
	Computational Hurdles
	This Thesis
	A Model of Type Theory in Cubical Sets
	Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom
	Canonicity for Cubical Type Theory

	Statement of Personal Contribution

	I A Model of Type Theory in Cubical Sets
	Introduction
	Semantics of Martin-Löf Type Theory
	Categories with Families
	Presheaf Models of Type Theory
	Dependent Products
	Dependent Sums
	Identity Types
	Universes

	Cubical Sets
	The Cubical Category
	Cubical Sets
	Cubical Sets via Nominal Sets
	Separated Products

	Kan Cubical Sets
	The Uniform Kan Condition
	The Kan Cubical Set Model
	Identity Types
	Functional Extensionality
	Path Application
	Heterogeneous Identity Types

	Regular Kan Types
	Kan Completion

	The Universe of Kan Cubical Sets
	Conclusion

	II Cubical Type Theory
	Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom
	Introduction
	Basic Type Theory
	Path Types
	Syntax and Inference Rules
	Examples

	Systems, Composition, and Transport
	The Face Lattice
	Syntax and Inference Rules for Systems
	Composition Operation
	Kan Filling Operation
	Equality Judgments for Composition
	Transport

	Derived Notions and Operations
	Contractible Types
	The pres Operation
	The equiv Operation

	Glueing
	Syntax and Inference Rules for Glueing
	Composition for Glueing

	Universe and the Univalence Axiom
	Composition for the Universe
	The Univalence Axiom

	Semantics
	The Category of Cubes and Cubical Sets
	Presheaf Semantics
	Interpretation of the Syntax

	Extensions: Identity Types and Higher Inductive Types
	Identity Types
	Higher Inductive Types

	Related and Future Work

	Appendices
	Details of Composition for Glueing
	Univalence from Glueing
	Singular Cubical Sets

	Canonicity for Cubical Type Theory
	Introduction
	Reduction
	Computability Predicates
	Soundness
	Extending with the Circle
	Conclusion

	Bibliography

