
MATHEMATISCHES INSTITUT
DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Diplomarbeit

On the Computational Content of Choice
Axioms

vorgelegt von
Simon Huber

MATHEMATISCHES INSTITUT
DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Diplomarbeit

On the Computational Content of Choice
Axioms

vorgelegt von
Simon Huber

Betreuer Prof. Dr. Helmut Schwichtenberg
Abgabetermin 14. Januar 2010

i

Abstract

The present thesis studies the computational content of the axiom of
countable choice and the axiom of dependent choice, as well as some of
their classical equivalents. This content can be obtained by various different
recursion schemes — here we turn our attention to the following definition
principles: bar recursion of Spector, a variant thereof due to Kohlenbach,
open recursion of Berger, the functional introduced by Berardi, Bezem, and
Coquand, and the related modified bar recursion of Berger and Oliva. We
consider the following aspects. First, we introduce the partial continuous
functionals using the information systems of Scott, and, building on that,
the Kleene-Kreisel continuous functionals. Moreover, we develop a term
system with a corresponding semantic. Second, we show that the Kleene-
Kreisel continuous functionals are a model of the recursion schemes above.
This is proved using proof principles closely related to the recursion schemes.
Third, we turn to the question of interdefinability of the schemes. Finally,
we show how to extract programs, which use one of the recursion schemes,
from proofs using classical choice principles. Here we restrict ourselves to
approaches using a combination of modified realizability and A-translation.
This includes modified bar recursion, open recursion, and variants thereof.

Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem rechnerischen Gehalt des
abzählbaren Auswahlaxioms und des Axioms der abhängigen Auswahl, sowie
dazu klassisch äquivalenter Prinzipien. Dieser Gehalt kann durch verschie-
dene Rekursionsschemata ermittelt werden — wir beschränken uns hier auf
folgende Definitionsprinzipien: Bar-Rekursion nach Spector, deren Variante
nach Kohlenbach, offene Rekursion nach Berger, das von Berardi, Bezem
und Coquand eingeführte Funktional, sowie die verwandte, von Berger und
Oliva eingeführte, modifizierte Bar-Rekursion. Wir untersuchen hier die
folgenden Aspekte. Erstens führen wir die partiell stetigen Funktionale
durch Informationssysteme von Scott ein und, darauf basierend, die Kleene-
Kreisel stetigen Funktionale. Weiter entwickeln wir ein Termsystem und eine
dazugehörige Semantik. Zweitens zeigen wir, dass die Kleene-Kreisel steti-
gen Funktionale ein Modell für unsere Rekursionsschemata sind. Dies wird
durch Beweisprinzipien gezeigt, welche eng mit den Rekursionsschemata ver-
wandt sind. Drittens wenden wir uns der Frage der Interdefinierbarkeit
der verschiedenen Rekursionsschemata zu. Schließlich zeigen wir, wie man
aus Beweisen, die klassische Auswahlprinzipien verwenden, Programme ex-
trahieren kann, welche eines der obigen Schemata verwendet. Hierbei be-
schränken wir uns auf Ansätze, die mit einer Kombination aus A-Überset-
zung und Realisierbarkeitsinterpretation behandelbar sind. Dies beinhaltet
die modifizierte Bar-Rekursion sowie die offene Rekursion und deren Vari-
anten.

ii

Danksagung

An erster Stelle danke ich meinem Betreuer Prof. Dr. Helmut Schwicht-
enberg für die stete Unterstützung und das ideale Arbeitsumfeld. Nicht nur
war – und ist – er ein hervorragender Lehrer für mich, sondern er hatte auch
immer ein offenes Ohr für meine Fragen und Anmerkungen.

Desweiteren möchte ich mich bei meinen jetzigen und früheren Bürokol-
legen für die vielen erhellenden Gespräche und unterhaltsamen Momente be-
danken. Ebenso danke ich den übrigen Mitgliedern der Logik-Arbeitsgruppe
für die schöne Atmosphäre. Bei Max Huber, Basil Karádais und Florian
Ranzi bedanke ich mich für das Korrekturlesen meiner Arbeit.

Für Diskussionen zum Thema möchte ich mich auch bei Prof. Dr. Ulrich
Berger, Dr. Philipp Gerhardy, Dr. Paulo Oliva und Priv.-Doz. Dr. Peter
Schuster bedanken. Herrn Schuster danke ich dafür, dass er mich auf das
Lemma bzw. Induktionsprinzip von Tukey-Teichmüller aufmerksam gemacht
hat, was zur Formulierung der erweiterten Updateinduktion führte.

Schließlich möchte ich mich bei meinen Freunden und meiner Familie
bedanken dafür, dass sie immer für mich da waren. Meinen Eltern danke ich
auch für die andauernde Unterstützung, die mir das Studium erst ermöglicht
hat.

Contents

Introduction 1
Outline of the Contents 2
Preliminaries 3

Chapter 1. Syntax 5
1. Types 5
2. Terms 6
3. Constructor Patterns and Computation Rules 7
4. Reduction 8
5. Examples: Plotkin’s PCF and Gödel’s T 11
6. Heyting and Peano Arithmetic 13

Chapter 2. Semantics 16
1. Coherent Information Systems 16
2. Partial Continuous Functionals 20
3. Denotational Semantics 22
4. Preservation of Values 28
5. Operational Semantics and Computational Adequacy 31
6. Totality and the Density Theorem 35
7. Kleene-Kreisel Continuous Functionals 40
8. Notes 44

Chapter 3. Recursion 45
1. Bar Recursion and Variants 46
2. Modified Bar Recursion 51
3. Open Recursion and Variants 54
4. Definability 59
5. Fan Functional 69
6. Notes 74

Chapter 4. Proof Interpretations 76
1. Negative Translation and A-Translation 76
2. Realizability Interpretation 78
3. Realizing Open Induction and Variants 79
4. Realizing ACg and DCg with Modified Bar Recursion 85
5. Notes 88

Bibliography 89

Index 92

iii

Introduction

A fundamental question of proof theory being of interest to mathemati-
cians and computer scientists is to determine and classify the computational
content of a formal proof.

Suppose we have a formal proof of a statement of the form ∀n∃mA(n,m)
with A a quantifier-free formula (this may be regarded as a specification of
a program). Then we are interested in a method for extracting an algorithm
or program p from our given proof such that ∀nA(n, p(n)) holds. Moreover,
we are interested in the complexity of p.

If the formal proof is constructive in nature, this is directly possible
via the so-called Curry-Howard correspondence, i.e., the proofs-as-programs
paradigm. The idea of “unwinding” the constructive content of prima facie
non-constructive proofs goes back to Kreisel. This was formulated as an
alternative to Hilbert’s consistency program:

“There is a general program which does not seem to suffer
the defects of the consistency program: To determine the
constructive (recursive) content or the constructive equiva-
lent of the non-constructive concepts and theorems used in
mathematics, particularly arithmetic and analysis.” [25, p.
155]

One aim of the thesis is to explore the computational content of choice
principles in a classical context, more precisely, the axiom of countable and
dependent choice, as well as classical equivalent principles.

The axiom of (countable) choice plays a crucial role in classical anal-
ysis. Together with the principle of excluded middle, it implies the full
comprehension axiom. This allows to introduce sets of natural numbers im-
predicatively: Given a formula A(n), comprehension enables us to form the
set {n ∈ N | A(n)}— even if the formula A contains quantification over sets
of natural numbers, i.e., already refers to the entity of all sets of naturals.

If one interprets the axiom of choice constructively via the Brouwer-
Heyting-Kolmogorov interpretation of the logical constants, then it is valid.
However, the negative translation of the axiom of choice is not provable
intuitionistically and so the axiom of choice is apparently weaker in an in-
tuitionistic setting. Thus, from a constructive point of view, the (classical)
axiom of choice turns out to be problematic.

All this suggests that a computational interpretation of classical choice
principles is not straightforward. This was first achieved in 1962 by Spec-
tor [42], who extended Gödel’s Dialectica (or functional) interpretation of
arithmetic [18] to classical analysis by an extension of Gödel’s T with a new
principle of recursion, the so-called bar recursion. There have been various

1

OUTLINE OF THE CONTENTS 2

other methods, most notably Girard’s interpretation of second order arith-
metic using the polymorphic λ-calculus [17], but we now concentrate on
approaches relevant to our investigations.

In [2], Berardi, Bezem, and Coquand proposed a different interpreta-
tion of classical countable choice and dependent choice which resulted in
a more demand-driven algorithmic content than Spector’s interpretation.
Their method builds on a variation of realizability opposed to the Dialec-
tica interpretation used by Spector. Building on that, Berger [4] introduced
open recursion which realizes open induction — a fragment of an induc-
tion principle by Raoult [34], which is classically equivalent to dependent
choice. Moreover, he proposed a special instance of open recursion, namely
update recursion, and the corresponding update induction. It turned out
that the functional of Berardi, Bezem, and Coquand is a special case of
update recursion.

In this thesis we propose yet another definition and proof principle called
extended update recursion and induction respectively, which lies between
open and update recursion and induction. This allows to obtain the com-
putational content of the axiom of choice along the lines of the update
recursion/induction approach.

Later, Berger and Oliva [6, 7] introduced a variant of Spector’s bar
recursion, which they dubbed modified bar recursion and allowed for an
easier correctness and termination proof. Here we present how one can
obtain the computational content of classical choice principles using the
approaches based on modified bar recursion and variants of open recursion.

All of the aforementioned recursion schemes come with different variants
and flavors. Two natural questions arise: (a) Are there any mathematical
models of these definition principles, i.e., are they consistent? (b) How do
these recursion schemes relate w.r.t. interdefinability?

This thesis tackles both questions. Concerning (a), we introduce the
Kleene-Kreisel continuous functionals and show that they are a model of
the recursion schemes. For this, we develop the theory of partial continuous
functionals based on coherent Scott information systems up to the density
theorem; the Kleene-Kreisel functionals are then equivalence classes of cer-
tain partial continuous functionals. Moreover, we formulate a flexible term
language together with an operational and adequate denotational semantics.
Our treatment is kept very general and thus is also of general interest.

Concerning (b), many questions have been answered in [7]. We present
some of these results and extend on some relations.

Outline of the Contents

This diploma thesis is organized as follows. Chapter 1 introduces a gen-
eral typed term language and the formal systems we use. Moreover, we
formulate a reduction relation on terms and show its confluence. In Chap-
ter 2 we develop the general theory of coherent information systems and,
building on this, we introduce the partial continuous functionals. Then we
define the denotation of a term as a partial continuous functional and an
operational semantics which is computationally adequate w.r.t. the denota-
tional semantics. Next, we single out the total among the partial functionals,

PRELIMINARIES 3

prove Kreisel’s Density Theorem, and introduce the model of the Kleene-
Kreisel continuous functionals which forms a model of classical arithmetic
plus dependent choice. Chapter 3 defines all recursion schemes and the cor-
responding axiom schemes, shows the validity of the recursion principles in
the Kleene-Kreisel continuous functionals, and studies the interdefinability
of these recursion principles. Moreover, we give an algorithm for the fan
functional using two of our schemes. In the last chapter we show how one
can extract the computational content using the discussed schemes from
a proof using choice axioms; here we restrict ourselves to methods using
variants of open recursion and modified bar recursion.

Preliminaries

The set of natural numbers {0, 1, 2, . . . } is denoted by N. We write
X ⊆fin Y if X is a finite subset of Y .

If R is a binary relation on a set X, we usually write R in infix notation.
The transitive closure of R is denoted by R+ and the reflexive and transitive
closure by R∗. We define R≤m :=

⋃
0≤n≤mR

n, where R0 := {(x, x) | x ∈ X}
and Rn+1 := {(x, y) | ∃z ∈ X(xRnz ∧ zRy)}.

Whenever we introduce a metavariable for some sort of objects, we tac-
itly assume that all primed and indexed variants range over the same sort
of objects.

We make extensive use of the arrow notation for finite lists as follows.
An arrow over a symbol stands for a finite list of objects of the same sort as
the symbol, e.g., ~x stands for a finite list x1, . . . , xn. The length of a finite
sequence ~x = x1, . . . , xn is n and denoted by |~x|. Note that this includes the
empty sequence, denoted by 〈〉, if n = 0. As usual, expressions involving the
arrow notation should be read componentwise. For instance, if not stated
otherwise, ~xR~y should be read as |~x| = |~y| and x1Ry1, . . . , xnRyn for a binary
relation R; if X is a set, ~x ∈ X means x1 ∈ X, . . . , x|~x| ∈ X. However, if
clear from the context or stated explicitly, there will be exceptions to this
rule. Sometimes we identify ~x with the set of its components {x1, . . . , x|~x|}.
E.g., we write x ∈ ~x if x is a component in the list ~x, or FV(E) ⊆ ~x if the
free variables of E are among x1, . . . , x|~x|.

We identify α-equivalent formulas, terms, and types. The set of free
variables of an expression E (i.e., E a formula of term) is defined as usual
and denoted by FV(E); if E is a set or list of expressions we set FV(E) =⋃
E∈E FV(E). An expression is called closed if it has no free variables.

A substitution, denoted by ξ, is a finite mapping from variables to terms
preserving the type, i.e., it is a finite set of pairs (xi,Mi) (i = 1, . . . , n),
where the xi’s are distinct and xi has the same type as Mi. We write

E[~M/~x] for this substitution applied to an expression E. The application
of such a substitution to a term or formula is defined “capture-free”, that
is, it operates on terms and formulas by simultaneously replacing xi by Mi,
renaming bound variables whenever necessary to avoid that free variables
in the Mi become bound. If an expression E has been introduced as E(~x)

(~x distinct variables), then E(~M) denotes E[~M/~x]. The same conventions
apply to type substitutions. We assume that the reader is acquainted with

PRELIMINARIES 4

basic first-order unification, in particular, most general unifiers as presented
in, e.g., [46, p. 33 f.].

We use a mild form of the dot-notation: A dot stands for a pair of paren-
theses opening at the dot and extending to the right as far as syntactically
possible. E.g., ∀x.A→ B stands for ∀x(A→ B).

Concerning iterated implications, we write A1 → A2 → . . . → An → B

or just ~A→ B with ~A = A1, . . . , An for A1 → (A2 → . . .→ (An → B) . . .);
for arrow types we write ρ1 → ρ2 → · · · → ρn → σ or just ~ρ → σ with
~ρ = ρ1, . . . , ρn for ρ1 → (ρ2 → · · · → (ρn → σ) . . .).

We write IH (SIH) as an abbreviation for (side) induction hypothesis.
Sometimes we write “Ind(E)” for “Induction on E”, where E is usually induc-
tively defined. If E is more than one expression, we tacitly mean an induc-
tion on the “maximum” (only if this makes sense). Moreover, “Cases(E)”
abbreviates “case distinction on E”.

CHAPTER 1

Syntax

In this chapter we introduce all syntactical concepts used in the thesis.
This includes a typed term language similar to Plotkin’s PCF [33]. How-
ever, our approach is based on computation rules, which are somehow more
flexible than fixed-point operators, and also includes PCF and Gödel’s T
[18] as special cases. Moreover, our language features a rich type system in
the sense that it has so called “free algebras” as base types. Furthermore
we give a reduction relation for our term system and prove its confluence.
In the last part of the present chapter we introduce all formal systems, in-
cluding Heyting and Peano Arithmetic in higher types, which are used in
the rest of the thesis.

Apart from minor differences, the definitions of terms and types are
taken from [37] and [35].

1. Types

Our type system provides general datatypes as base types called “alge-
bras” or “µ-types”. For example, the type for the natural numbers can be
defined as µα(α, α → α). Here, the list α, α → α stands for the generation
principles of the natural numbers — the zero and successor operations. In
addition, we also allow simultaneously defined algebras.

Let TyVar be a countably infinite set of type variables.

Definition 1.1 (Types, Constructor Types). Types (denoted by ρ, σ,
τ ∈ Ty) and constructor types (denoted by κ ∈ KT(~α) for ~α ∈ TyVar distinct
type variables) are inductively defined by the clauses:

~ρ, ~σ1, . . . , ~σn ∈ Ty ~α ∈ TyVar distinct

~ρ→ (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj ∈ KT(~α)

~κ ∈ KT(~α)

(µ~α.~κ)j ∈ Ty
(|~κ| ≥ 1, 1 ≤ j ≤ |~α|) ρ, σ ∈ Ty

ρ→ σ ∈ Ty

A type of the form (µ~α.~κ)j is called an algebra, µ-, ground-, or base type.
Types of the form ρ → σ are called arrow types. We say that the algebras
~µ = µ~α.~κ are simultaneously defined . In (µ~α.~κ)j , ~α are bound and we
identify types up to α-equivalence. The set of all µ-types is denoted by µTy
and we assume that the letter µ ranges over µTy. The parameter types of
µ = (µ~α.~κ)j are the members of all ~ρ appearing in the constructor types
κ ∈ ~κ of the form

κ = ~ρ→ (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj .

5

2. TERMS 6

A type is called finitary , if it is a base type µ = (µ~α.~κ)j and for all 1 ≤ i ≤ |~κ|
with κi = ~ρ → (~σ1 → αj1) → · · · → (~σn → αjn) → αj all members of ~ρ are
finitary and all ~σk are empty (1 ≤ k ≤ n).

Examples. We now give some examples of base types. Let ρ, σ ∈ Ty.

N := µα(α, α→ α) natural numbers,

B := µα(α, α) booleans,

ρ∗ := µα(α, ρ→ α→ α) lists of elements of type ρ,

ρ× σ := µα(ρ→ σ → α) product type,

ρ+ σ := µα(ρ→ α, σ → α) sum type,

O := µα(α, α→ α, (N→ α)→ α) countable ordinals.

The examples above are all non-simultaneously defined algebras. For com-
pleteness, we also give examples of simultaneously defined algebras:

(Ev,Od) := µα, β.(α, β → α, α→ β) even and odd numbers,

(T(ρ),Ts(ρ)) := µα, β.(ρ→ α, β → α, β, α→ β → β) trees and tree lists.

Definition 1.2. Let B ⊆ Ty. We call B a system of types if B∩µTy 6= ∅,
B is closed under arrow types (i.e., ρ, σ ∈ B implies ρ → σ ∈ B), and for
all (µ~α.~κ)j ∈ B and 1 ≤ l ≤ |~α|, also (µ~α.~κ)l ∈ B and for all κ ∈ ~κ, if

κ = ~ρ→ (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj , then ~ρ, ~σ1, . . . , ~σn ∈ B.

In the sequel we assume that a system of types B is given and that all
types range over B.

2. Terms

For each ~µ = µ~α.~κ and for each 1 ≤ i ≤ |~κ| we have a constructor C~µi of
type κi[~µ/~α]. We assume that C ranges over constructors and we write Cσ

to indicate that C is of type σ.

Examples. For the naturals N, we have two constructors denoted by
0N (zero) and SN→N (successor). The booleans B have two constructors
ttB (true) and ffB (false). Further examples are:

(inlρ,σ)ρ→ρ+σ, (inrρ,σ)σ→ρ+σ left and right injection,

(pairρ,σ)ρ→σ→ρ×σ pairing,

(nilρ)
ρ∗ , (consρ)

ρ→ρ∗→ρ∗ list constructors.

An arity is a list of types and is denoted with an extra pair of outer
parentheses, i.e., by (σ1, . . . , σn). A defined constant of type σ is a symbol D
together with a type σ and a fixed arity ar(D) such that ar(D) = (σ1, . . . , σn)
where σ = ~σ → ρ for some type ρ. It is convenient to assign an arity to
constructors by ar(C~τ→µ) := (~τ). Let D be a set of defined constants. In the
sequel we assume that D ranges over D. Again, a superscript Dσ indicates
that D is of type σ.

For each type σ we assume a countably infinite set Varσ of variables of
type σ denoted by xσ, yσ, zσ. Let Var be the set of all variables.

3. CONSTRUCTOR PATTERNS AND COMPUTATION RULES 7

Definition 2.1 ((B, D)-terms).

M,N ::= xσ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ | Cσ | Dσ

Terms are identified up to α-equivalence. We write Mσ or M : σ to indi-
cate that M is a term of type σ. We usually assume that all expressions are
well typed and omit type information whenever types can be inferred from
the context. When there is no ambiguity, outer parentheses are dropped.
Moreover, we adopt the convention that application associates to the left.
Application and abstraction are extended to lists of terms and variables

by M ~N := (. . . ((MN1)N2) . . .)Nn and λ~xM := λx1(λx2(. . . (λxnM) . . .))
respectively.

Notation. In the sequel we will use the following notations for lists and
pairs:

〈〉 := nil, lρ
∗ ∗ xρ := consxl

〈Mρ, Nσ〉 := pairMN : ρ× σ.
Note the order in l ∗ x.

3. Constructor Patterns and Computation Rules

Definition 3.1. (1) Constructor terms are given by the grammar

P ::= xρ | (C ~P)µ.

(2) A constructor pattern of arity (σ1, . . . , σn) is a list ~P = P σ11 , . . . , P σnn
of constructor terms which is linear , i.e., each variable occurs at

most once in ~P . We usually denote constructor patterns by ~P , ~Q.

(3) Let ~P be a constructor pattern and ξ a substitution. Then ξ is

called admissible for ~P if ~Pξ is a constructor pattern.

Remark 3.2. (1) Let ~P and ~Q be constructor patterns of the same

arity and with FV(~P)∩FV(~Q) = ∅. Let ξ be a most general unifier

of ~P and ~Q, then ξ is admissible for ~P and ~Q.

(2) Let ξ be admissible for ~P and ~x = FV(~P), then ~xξ is again a
constructor pattern.

Definition 3.3. Let D ∈ D and .D a binary relation between construc-
tor patterns and terms. Then .D is called a system of computation rules for
D if:

(1) If ~P .D M , then ar(~P) = ar(D), FV(M) ⊆ FV(~P), and M has the

same type as D~P .

(2) If ~P .DM , ~Q.DN , and ξ is a most general unifier of ~P and ~Q, then

Mξ = Nξ and either ~P = ~Q, or ~P and ~Q have distinct variables.

A system of computation rules for D is a family P = (.D | D ∈ D) such
that .D is a system of computation rules for each D ∈ D. In this case we

write D~P .M for ~P .DM . We call D~P .M a computation rule for D.

The restriction in (2) that ~P and ~Q should have distinct free variables
whenever being different and unifiable is only of technical nature. For dis-
playing purposes we adopt the convention that implicitly all computation

4. REDUCTION 8

rules have different free variables although we might use the same variables

in their formulation. Moreover, we tacitly assume FV(~P) ⊆ ~y whenever we

write D~P (~y) . M .

Example. Consider the boolean connective for conjunction:

tt and y . y, x and tt . x,

ff and y . ff, x and ff . ff.

Notice that whenever two left hand sides are unifiable, the unified right
hand sides are equal, e.g., in the first two rules a most general unifier sends
x and y to tt, thus the unified right hand sides are both equal to tt. Further
examples of computation rules can be found in Section 5.

For now we fix a system of computation rules for D denoted by P.

4. Reduction

Computation rules inherit directly a notion of stepwise transformations
of defined constants. Together with the usual β-reduction, these will consti-
tute our reduction relation.

Definition 4.1. The reduction relation −→βP , or −→ for short, on
terms is inductively defined by:

red-beta
(λxM)N −→M [N/x]

red-d
D~P (~y) . M

D~P (~N) −→M [~N/~y]

red-cong-l
M −→M ′

MN −→M ′N
red-cong-r

N −→ N ′

MN −→MN ′

red-xi
M −→ N

λxM −→ λxN

A term of the form (λxM)N is called β-redex . A term of the form

D~P (~N) with D~P (~y) . M for some M is called P-redex . If M −→+ N ,
then N is a reduct of M ; if already M −→ N , then we say that N is an
immediate reduct of M . A term that has no immediate reduct is called
normal . If M −→∗ N and N is normal, we call N a normal form of M .

Clearly, this notion of reduction does not always ensure termination. A
trivial example is given by the computation rule Ω . Ω which yields the
infinite reduction sequence Ω −→ Ω −→ Ω −→

4.1. Confluence. The aim of this subsection is to show the confluence
of the reduction relation defined above. In general, the confluence property
of a relation ensures that normal forms are unique whenever they exist.

Definition 4.2. A binary relation −→R has the diamond property , if
x −→R y1 and x −→R y2 implies that there exists z such that y1 −→R z
and y2 −→R z. It is confluent , if −→∗R has the diamond property.

Lemma 4.3. If a binary relation −→R has the diamond property, then
−→R is confluent.

4. REDUCTION 9

In order to show the confluence of our reduction relation, we adapt the
proof of Takahashi [45] which is based on the parallel reduction technique
due to Tait and Martin-Löf. The parallel reduction can remove all visible
redexes in one step.

In the following, B ranges over constructors and defined constants.

Definition 4.4. The parallel reduction is inductively defined by the
clauses:

par-var
x =⇒ x

par-const
B =⇒ B

par-xi
M =⇒M ′

λxM =⇒ λxM ′

par-cong
M =⇒M ′ N =⇒ N ′

MN =⇒M ′N ′
par-beta

M =⇒M ′ N =⇒ N ′

(λxM)N =⇒M ′[N ′/x]

par-d
D~P (~y) . M ~N =⇒ ~N ′

D~P (~N) =⇒M [~N ′/~y]

Lemma 4.5. (1) =⇒ is reflexive.
(2) −→⊆=⇒⊆−→∗, hence =⇒∗=−→∗.
(3) If M =⇒M ′ and ~N =⇒ ~N ′, then M [~N/~x] =⇒M ′[~N ′/~x].

Proof. (1) and (2) are easy to prove. (3) is proved by induction on
M =⇒M ′, where the only interesting case is par-d:

par-d
D~P (~y) . M ~K =⇒ ~K ′

D~P (~K) =⇒M [~K ′/~y]

Then FV(M) ⊆ ~y by our restriction on computation rules and by IH we

have ~K[~N/~x] =⇒ ~K ′[~N ′/~x]. So by par-d:

D~P (~K)[~N/~x] = D~P (~K[~N/~x]) =⇒M [~K ′[~N ′/~x]/~y] = (M [~K ′/~y])[~N ′/~x]

Where the last equality holds since FV(M) ⊆ ~y. �

Definition 4.6. The complete expansion M∗ of M is defined by induc-
tion on M :

x∗ := x,

C∗ := C,

D∗ := D if |ar(D)| 6= 0, or |ar(D)| = 0 and D has no rules,

(λxM)∗ := λxM∗,

(M1M2)∗ := M∗1M
∗
2 if M1M2 is neither a β- nor a P-redex,

((λxM1)M2)∗ := M∗1 [M∗2 /x],

(D~P (~N))∗ := M [~N∗/~y] if D~P (~y) . M.

Lemma 4.7. M∗ is well-defined.

Proof. It suffices to prove that, if D~P1(~N1) = D~P2(~N2) and D~Pi(~yi) .

Mi (i = 1, 2), then M1[~N∗1 /~y1] = M2[~N∗2 /~y2]. Assume the premises. Then

D~P1(~N1) = D~P2(~N2) implies that D~P1(~y1) and D~P2(~y2) are unifiable, so
let ξ be the most general unifier. Then M1ξ = M2ξ by our assumption on

4. REDUCTION 10

computation rules. Moreover ~Ni = (~yiξ)(~Ki) for some ~Ki and w.l.o.g. we

can assume that ~K1 = ~K2 and FV(~yiξ) ⊆ ~x (i = 1, 2). Now:

~N∗i = ((~yiξ)(~Ki))
∗ = (~yiξ)(~K

∗
i).

Where the last equality is easily seen, since (~yiξ) is a constructor pattern.

Finally, the claim follows from M1ξ = M2ξ, ~K
∗
1 = ~K∗2 , and:

Mi[~N
∗
i /~yi] = Mi[(~yiξ)[~K

∗
i /~x]/~yi] = (Mi[~yiξ/~yi])[~K

∗
i /~x] = (Miξ)[~K

∗
i /~x]. �

Theorem 4.8. If M =⇒ N , then N =⇒M∗.

Proof. Ind(M). Cases(M =⇒ N). The cases where M is a variable or
a constructor are trivial.

Case

par-const
D =⇒ D

.

If |ar(D)| = 0, or |ar(D)| 6= 0 and D has no rules, then D∗ = D and we are
done. Otherwise, |ar(D)| = 0 and there is a (unique) M with D .M . Using
par-d gives D =⇒M = D∗.

Case

par-xi
M =⇒ N

λxM =⇒ λxN
.

Then by IH N =⇒M∗, hence also λxN =⇒ λxM∗ = (λxM)∗.
Case par-cong. We distinguish cases on M .
Subcase M = M1M2 is neither a β- nor a P-redex, then:

par-cong
M1 =⇒ N1 M2 =⇒ N2

M1M2 =⇒ N1N2
.

By IH N1 =⇒M∗1 and N2 =⇒M∗2 , hence N1N2 =⇒M∗1M
∗
2 = (M1M2)∗.

Subcase M = (λxM1)M2 =⇒ (λxN1)N2 = N with M1 =⇒ N1 and
M2 =⇒ N2. Then by IH N1 =⇒M∗1 and N2 =⇒M∗2 . Hence (λxN1)N2 =⇒
M∗1 [M∗2 /x] = ((λxM1)M2)∗ by par-beta.

Subcase M = D~P (~M) =⇒ N with D~P (~y) .K and FV(~P) = ~y. By arity

reasons the last rules in D~P (~M) =⇒ N were applications of par-cong

and thus N = D ~N for some ~N with ~P (~M) =⇒ ~N . One easily sees that
~N = ~P (~N ′) with ~M =⇒ ~N ′. By IH, ~N ′ =⇒ ~M∗. Moreover (D~P (~M))∗ =

K[~M∗/~y], and hence N = D~P (~N ′) =⇒ K[~M∗/~y] = M∗ by par-d.
Case

par-beta
M1 =⇒ N1 M2 =⇒ N2

(λxM1)M2 =⇒ N1[N2/x]
.

By IH we obtain N1 =⇒ M∗1 and N2 =⇒ M∗2 . Now Lemma 4.5 yields
N1[N2/x] =⇒M∗1 [M∗2 /x] = ((λxM1)M2)∗.

Case

par-d
D~P (~y) . K ~M =⇒ ~N

D~P (~M) =⇒ K[~N/~y]
,

with FV(~P) = ~y. By IH ~N =⇒ ~M∗. So by Lemma 4.5 we get K[~N/~y] =⇒
K[~M∗/~y] = (D~P (~M))∗. �

Corollary 4.9. −→ is confluent.

5. EXAMPLES: PLOTKIN’S PCF AND GÖDEL’S T 11

Proof. By Theorem 4.8 =⇒ satisfies the diamond property and hence
is confluent by Lemma 4.3. So the claim follows since =⇒∗ equals −→∗ by
Lemma 4.5 (2). �

Remark 4.10. If we add η-reduction, i.e., the rule

λx.Mx −→M
(x /∈ FV(M)),

our system is no longer confluent. Consider a defined constant D with the
only computation rule Dx . tt. Then λx.Dx −→ D according to the η-rule,
and λx.Dx −→ λx.tt. Both reducts are normal and hence don’t possess a
common reduct.

5. Examples: Plotkin’s PCF and Gödel’s T

In this section we introduce the term systems PCF and Gödel’s system
T . Both are instances of our theory so far.

5.1. Plotkin’s PCF . The programming language for computable func-
tionals, PCF for short, was first introduced by Plotkin in [33]. It is a pro-
gramming language based on Scott’s logic for computable functionals (LCF)
[38, 29] and is a simplified typed functional programming language based
on fixed-point operators.

We now describe the system PCF . Types are given by the type for
natural numbers N and if ρ, σ are types, then so is ρ → σ. The defined
constants are predN→N, ifzN→N→N→N, and for every type ρ, Yρ of type
(ρ→ ρ)→ ρ. As computation rules we take the following:

(1)

pred 0 . 0 ifz 0yz . y

pred(Sx) . x ifz(Sx)yz . z

Yρ f . f(Yρ f)

The resulting term system is called PCF .

Remark 5.1. The system above is not exactly the same as Plotkin
defined it in [33]. There, additionally to N, the booleans B are taken as a
base type. Besides constants for the booleans and some minor differences in
the choice of the constants, Plotkin uses a constant kn for each n ∈ N instead
of constructors and formulates the reduction rules using these numerals,
e.g., his predecessor constant is defined on numerals kn only. This can as
well be emulated in our system using pred(Sn+10) . Sn0 as a computation
rule for each n ∈ N. (Recall that we allow infinitely many computation
rules.) In fact, this results in a different reduction relation: If we define
∞ := YN(S), then pred∞ only reduces to terms of the form pred(Sn∞)
in Plotkin’s formulation, whereas in our formulation it also reduces to ∞.
However, with our intended semantics, i.e., a non-flat semantic domain for
N (see the next chapter), the formulation in (1) seems to be more natural.

5.2. Gödel’s T . The system T is a generalization of the primitive
recursive functions to higher (finite) types and was introduced by Gödel
in [18]. The essential ingredient of the system is the constant for primitive
(or structural) recursion in higher types which in fact was already introduced
by Hilbert in [20]. Let us fix an arbitrary system of types B.

5. EXAMPLES: PLOTKIN’S PCF AND GÖDEL’S T 12

Structural Recursion. Let ~µ = µ~α.~κ. For the i-th constructor type

(2) κi = ~ρ→ (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj

and given types ~τ with |~τ | = |~µ|, we define the i-th step type

δ~µ,~τi := ~ρ→ (~σ1 → µj1)→ · · · → (~σn → µjn)

→ (~σ1 → τj1)→ · · · → (~σn → τjn)→ τj .

Then the j-th recursion operator R~µ,~τµj is given as a defined constant of type

R~µ,~τµj : µj → δ~µ,~τ1 → · · · → δ~µ,~τk → τj ,

where k is the length of ~κ. If ~µ and ~τ are clear from the context, we also

write Rj or R~τj for R~µ,~τµj and in the case of non-simultaneously defined base

types we drop the subscript. For each constructor C~µi : κi[~µ/~α] with κi as
in (2) we add the following computation rule:

Rj(C~µi ~x)~y . yi~x
(
λ~z~σ11 .Rj1(xR1 ~z1)~y

)
. . .
(
λ~z~σnn .Rjn(xRn~zn)~y

)
where yi is of type δ~µ,~τi and ~x = ~xP , ~xR with ~xP : ~ρ (the parameter argu-

ments) and xRi : ~σi → µji (the recursive arguments).

Examples. (1) For the type of natural numbers N this amounts
to the usual equations for primitive recursion in higher types. The

type of the recursion operator R := RN,τ
N is

R : N→ τ → (N→ τ → τ)→ τ

and the computation rules are

R0xf . x and R(Sn)xf . fn(Rnxf).

(2) For pair types ρ × σ we can define the left and right projections,

π0 and π1, using the recursion operators Rρ := Rρ×σ,ρρ×σ and Rσ :=

Rρ×σ,σρ×σ respectively:

π0 := λpρ×σ.Rρp(λxρλyσ.x),

π1 := λpρ×σ.Rσp(λxρλyσ.y).

Notice that π0(〈M,N〉) −→∗ M and π1(〈M,N〉) −→∗ N , but in
general, 〈π0(K), π1(K)〉 does not reduce to K.

The System TB. Gödel’s system T for a system of types B is denoted by
TB. The terms of TB are all (B,D)-terms, where D consists of all defined
constants for structural recursion. Reduction on these terms is defined by the
−→βP -reduction, where P is given by the computation rules for structural
recursion given above.

It is well-known that this reduction relation is strongly normalizing, i.e.,
every reduction sequence is finite (see [36, Corollary 6.13] for a proof in our
setting). It follows by confluence (cf. Section 4.1) that each term possesses
a unique normal form.

6. HEYTING AND PEANO ARITHMETIC 13

6. Heyting and Peano Arithmetic

In this section we introduce intuitionistic and classical arithmetic over
an arbitrary system of types B containing N. Our presentation is mainly
based on [47] and [35]. This section, however, only serves the purpose of
fixing our systems instead of giving a comprehensive introduction to the
subject.

It is convenient to allow arbitrary predicate parameters in our systems.
Let X be a set of predicate variables where each X ∈ X comes with a fixed
arity ar(X). Moreover, let ⊥ be a nullary predicate variable denoting falsity,
and for each type ρ, let =ρ be a binary predicate symbol of arity (ρ, ρ).

Definition 6.1. The formulas of HAω[X] are given by

A,B ::= Mρ =ρ N
ρ | ⊥ | X(~M ~ρ) | A ∧B | A ∨B | A→ B | ∀xρA | ∃xρA,

where ~M ~ρ,Mρ, and Nρ are terms of Gödel’s TB, and X ∈ X has arity (~ρ).
If X is empty, we simply write HAω instead of HAω[∅].

Negation is defined by ¬A := A→ ⊥.
A HAω[X]-predicate is a HAω[X]-formula A with distinguished variables

~x~σ, in symbols λ~x~σ.A. The arity of the a HAω[X]-predicate is defined as
ar(λ~xσ.A) := (~σ). We set (λ~x~σ.A)(~t~σ) := A[~t/~x]. Usually we are more
informal concerning predicates: If a formula A has been introduced with
distinguished variables ~x as A(~x), we may also view this formula as the
predicate λ~x.A.

Let Γ,∆ range over sets of HAω[X]-formulas. As usual, we write Γ,∆ or
Γ + ∆ for Γ ∪∆ and use similar notations for formulas.

6.1. Axioms and Logic. We adopt the convention that all axioms are
implicitly universally closed.

6.1.1. Induction. Let simultaneously defined algebras ~µ = µ~α.~κ and goal
formulas ∀xµjj Aj(xj) of HAω[X] be given. For the i-th constructor type
κi ∈ ~κ of the form

κi = ~ρ→ (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj

we define the i-th step formula Di as

Di := ∀~y~ρ, z~σ1→µj11 , . . . , z
~σn→µjn
n .

∀~x~σ11 Aj1(z1~x1)→ . . .→ ∀~x~σnn Ajn(zn~xn)→ Aj(Ci~y~z),

where Ci is the i-th constructor of ~µ.
The induction axioms of HAω[X] are given by

Ind~x,
~A

µj : ∀xj
(
D1 → . . .→ Dk → Aj(xj)

)
,

where the Aj(xj)’s range over HAω[X]-formulas.

Examples. As special cases of the general form, we state the induction
axioms for N and pair types ρ× σ:

Indn,AN : ∀n
(
A(0)→ ∀n(A(n)→ A(Sn))→ A(n)

)
,

Indz,Aρ×σ : ∀zρ×σ
(
∀xρ, yσA(〈x, y〉)→ A(z)

)
.

6. HEYTING AND PEANO ARITHMETIC 14

6.1.2. Equality Axioms. To simplify equational reasoning we postulate
equality between terms with the same normal form as follows. For any two
terms Mρ and Nρ with the same normal form, we add the axiom

Mρ =ρ N
ρ.

In particular, this includes reflexivity x =ρ x. The compatibility axiom is
given by

x =ρ y → A[x/z]→ A[y/z],

where A ranges over HAω[X]-formulas.
6.1.3. Logic. As base logical system we use (many sorted) minimal logic

based on natural deduction. We use natural deduction with assumptions
labeled by assumption variables as presented, e.g., in [48].

We write Γ `m A if there is a derivation of A from Γ in minimal logic,
and Γ `i A if there is a derivation in minimal logic using ex falso quodlibet ,
i.e., Γ + Efq `m A, where Efq is given by the axiom scheme

EfqB : ⊥ → B,

for B an HAω[X]-formula. Analogously, classical derivability Γ `c A is
defined as Γ + Stab `m A, where stability Stab is the axiom scheme

StabB : ¬¬B → B,

where B ranges over HAω[X]-formulas.

6.2. Description of the axiom system HAω[X]. The axioms of Hey-
ting Arithmetic in higher types, HAω[X], are the induction axioms, equality
axioms, and the axiom (with F := 0 =N 1)

F → X(~z)

for each X ∈ X ∪ {⊥}. We identify the system HAω[X] with its axioms
and hence we write HAω[X] + Γ `∗ A, ∗ = m, i, c to mean that there is a
derivation of A in minimal-, intuitionistic-, and classical logic respectively
from the axioms of HAω[X] and Γ. We also write HAω[X] + Γ ` A, or say
that A is provable in HAω[X] from Γ instead of HAω[X] + Γ `i A.

Peano Arithmetic in higher types PAω[X] is defined as HAω[X] but based
on classical logic. Thus we write PAω[X] + Γ ` A, or say that A is provable
in PAω[X] from Γ instead of PAω[X] + Γ `c A. Of course, we could have
just used classical derivability and HAω[X] instead of introducing PAω[X];
we prefer the latter to emphasize classical derivability.

To be more precise we should have written HAωB[X] to make the reference
to the system of types B explicit. We have not done so because later we will
focus on HAω for a fixed system of types.

Note. Instead of having an additional predicate for logical falsity ⊥
we could have used arithmetical falsity F = (0 =N 1) and based HAω on
minimal logic. Having ⊥ in the language, however, allows a clearer approach
to A-translation (cf. Chapter 4).

We conclude this subsection by listing some properties derivable in the
system HAω[X].

Since terms with the same normal form are equal (in HAω), it is provable
(in minimal logic) that constructors are injective (e.g., for the successor

6. HEYTING AND PEANO ARITHMETIC 15

SN→N use compatibility together with the predecessor function which is
definable using primitive recursion).

By induction on the buildup of HAω[X]-formulas, one easily sees that
F → A is derivable from HAω[X] in minimal logic. Because we have ¬0 =N 1
(i.e., F → ⊥), one can prove ∀nN(n = 0 ∨ n 6= 0) by induction. Here n 6= 0
means ¬(n = 0).

6.3. Extensionality. The system E−HAω[X] of extensional Heyting
Arithmetic is like HAω[X] with the additional axiom (scheme) of extension-
ality Ext given by:

Extρ,σ ∀xρ yx =σ zx→ y =ρ→σ z,

where ρ, σ range over B. Extensional Peano Arithmetic E−PAω[X] is defined
analogously.

CHAPTER 2

Semantics

In this chapter we develop the intended semantics of the syntactical
concepts developed in the last chapter. This guarantees that our recursion
schemes in Chapter 3 are consistent.

The underlying concept of our semantics is that of an information sys-
tem introduced by Scott [39]. Information systems directly incorporate the
concept of a “finite approximation” through so called formal neighborhoods;
the objects of our semantic domains are the ideals – possibly infinite objects
– of the information systems.

In the first section we define coherent information systems and study
their abstract properties. Section 2 introduces the information systems Cρ

and the partial continuous functionals as their ideals. In Sections 3–5 we
introduce the denotation of a term as a partial continuous functional and
investigate the relationship between the reduction relation on terms and
the denotation of terms, i.e., their operational and denotational behavior.
Sections 6 and 7 of the present chapter study the total among the partial
continuous functionals.

1. Coherent Information Systems

Information systems were first introduced by Scott in [39] as an alterna-
tive way of presenting Scott domains. They provide an axiomatic approach,
similar to logical deductive systems, to describe approximations of ideal ob-
jects by “finite” ones.

Often, the approach to higher type computation is presented using ab-
stract domain theory; in a Scott domain each element is the supremum of
certain compact (or finite) elements, or put in other words, each element is
approximated by finite ones. Here we take a different approach: we begin
by describing the finite elements.

It turns out that we only need particular information systems, namely
the coherent ones. We take those as our fundamental structure because they
allow a particularly terse presentation.

Definition 1.1. A coherent information system (abbreviated c.i.s.) is
a triple A = (A, ,̂`) such that:

(1) A is a countable non-empty set.
(2) ^ is a reflexive and symmetric binary relation on A (called the

consistency relation).
(3) ` is a binary relation between ConA and A (called the entailment

relation), where

ConA := {U | U ⊆fin A ∧ ∀a, b ∈ U(a^b)}
16

1. COHERENT INFORMATION SYSTEMS 17

is the set of all formal neighborhoods of A, with the following prop-
erties for all U, V ∈ ConA and a, b ∈ A:
(a) a ∈ U → U ` a,
(b) ∀b ∈ V (U ` b) ∧ V ` a→ U ` a,
(c) a ∈ U ∧ U ` b→ a^b.

The elements of A are called tokens (or atoms) and are denoted by a, b, c, . . . ,
formal neighborhoods by U, V,W,

Definition 1.2. Entailment and consistency are extended to formal
neighborhoods in the following way:

(1) U ` V :↔ ∀b ∈ V (U ` b)
(2) U^V :↔ U ∪ V ∈ Con
(3) U^a :↔ a^U :↔ {a}^U

Lemma 1.3. (1) U ` U
(2) U ` V ∧ V `W → U `W
(3) U ` V → U^V
(4) U ′ ⊇ U ∧ U ` V ∧ V ⊇ V ′ → U ′ ` V ′
(5) U ` V1, V2 → V1^V2

Proof. (1)–(4) are easy to see. For (5) assume that U ` V1, V2 and let
ai ∈ Vi for i = 1, 2. We have to show a1 ^ a2. By assumption U ` a1,
so U ∪ {a1} is consistent (and hence in Con) by (3). From (4) we get
U ∪ {a1} ` a2 and therefore a1^a2. �

Note that if we define U ≤ V as V ` U , then ≤ is a preorder on Con
with least element ∅. Moreover, by (5), two elements with an upper bound
have a least upper bound (namely their union).

Definition 1.4. Let A = (A, ,̂`) be a coherent information system
and x ⊆ A. Then x is consistent if a ^ b for all a, b ∈ x. Moreover x is
deductively closed if for all U ∈ Con with U ⊆ x and a ∈ A, U ` a implies
a ∈ x. The deductive closure x of x is defined as

x := {a | ∃U ∈ Con .U ⊆ x ∧ U ` a}.

Lemma 1.5. Let A = (A, ,̂`) be a c.i.s. and x ⊆ A. Then x is deduc-
tively closed.

Proof. Let U ⊆ x and U ` a; we must show a ∈ x. For each b ∈ U
there is a Vb ⊆ x with Vb ` b. Thus also Vb ^ b ^ U , and hence W :=⋃
b∈U Vb ∈ ConA. Clearly, x ⊇W ` U ` a, and so a ∈ x as required. �

Definition 1.6. Let A = (A,^A,`A) and B = (B,^B,`B) be two
coherent information systems. Then the exponent BA is defined as the
triple (C,`,)̂, where:

(1) C := ConA×B
(2) (U, a)^(V, b) :↔ (U^AV → a^Bb)
(3) W ` (V, b) :↔W ∈ Con∧W (V) ` b

where application for formal neighborhoods W = {(U1, a1), . . . , (Un, an)} is
defined by

W (U) := {ai | U `A Ui}.

1. COHERENT INFORMATION SYSTEMS 18

Lemma 1.7. Application for neighborhoods is monotone:

(1) U ` U ′ →W (U) ⊇W (U ′),
(2) W `W ′ →W (U) `W ′(U).

Proof. (1) is easy to see. For (2) let a ∈ W ′(U), then there exists V
with (V, a) ∈ W ′ and U ` V . By assumption W ` (V, a), i.e., W (V) ` a
and therefore W (U) ⊇W (V) ` a. �

Lemma 1.8. If A and B are coherent information systems, then so is
BA.

Proof. It is clear that the consistency relation is reflexive and symmet-
ric. We now check the rest of the axioms:

(1) Let (U, a) ∈ W , then clearly a ∈ W (U), so W (U) ` a, i.e., W `
(U, a).

(2) Let W ` W ′ and W ′ ` (U, a). We have to show W ` (U, a). But
W ′ ` (U, a) implies W ′(U) ` a so W (U) ` a by Lemma 1.7.

(3) Let (U, a) ∈ W and W ` (V, b). We have to show that (U, a) ^
(V, b). So assume U ∪ V ∈ ConA. We show: a ^ Bb. We have
U ∪ V `A U, V , hence by Lemma 1.7 W (U ∪ V) ⊇ W (U),W (V).
Furthermore W (U) `A a and W (V) `A b, so W (U ∪ V) `A a, b,
and hence a^Bb. �

Definition 1.9. Let A and B be coherent information systems. A
relation r ⊆ ConA×B is an approximable map from A to B, if:

(1) r(U, a) ∧ r(U, b)→ a^Bb, and
(2) W `A V ∧ r(V,U) ∧ U `B a→ r(W,a),

where we have written r(V,U) for ∀b ∈ U r(V, b). The set of all approximable
maps from A to B is denoted by Appr(A,B).

Definition 1.10. Let A be a coherent information system and x ⊆ A.
Then x is an ideal of A if x is consistent and deductively closed. The set of
all ideals of A is denoted by |A|. Ideals will usually be denoted by x, y, z.

Lemma 1.11. If A and B are coherent information systems, then

Appr(A,B) = |BA|.
Proof. Let r ∈ Appr(A,B). We first show that r is consistent: let

(U, a), (V, b) ∈ r with U ∪ V ∈ ConA. By (2) and U ∪ V ` U, V we have
r(U ∪ V, a) and r(U ∪ V, b) hence a^b by (1).

Next, we show that r is deductively closed. Let W ⊆ r and W ` (V, b),
i.e., W (V) ` b. We need r(V, b). By (2) it suffices to show r(V,W (V)),
so let a ∈ W (V); then there exists U with (U, a) ∈ W and V ` U . Since
W ⊆ r we have r(U, a), so r(V, a) by (2). This concludes the proof that r is
an ideal.

The converse direction is easy. �

Definition 1.12. Let A be an c.i.s. and U ∈ ConA, then the cone Ũ

over U is Ũ = {x ∈ |A| | x ⊇ U}.

Note that for formal neighborhoods U, V , we have Ũ ∩ Ṽ = ˜(U ∪ V).
So the cones form a basis of a topology on |A|, the so called Scott topology
on |A|.

1. COHERENT INFORMATION SYSTEMS 19

Lemma 1.13. Let A be a c.i.s. and B ⊆ |A|. Then the following are
equivalent:

(1) B is open w.r.t. the Scott topology,
(2) (a) B is monotone, i.e.,

x ∈ B → x ⊆ y → y ∈ B,
(b) B satisfies the Scott condition, i.e.,

x ∈ B → ∃U ⊆ x (U ∈ B),

(3) x ∈ B ↔ ∃U ⊆ x (U ∈ B).

Proof. (1) → (2). Let x ∈ B and x ⊆ y. Then, since B is open,

there exists a neighborhood U with Ũ ⊆ B and x ∈ Ũ , so U ⊆ x ⊆ y, i.e.,

y ∈ Ũ ⊆ B. Note that U ∈ Ũ , hence U ∈ B.
(2)→ (3). Obvious.

(3) → (1). For x ∈ B exists a U ⊆ x such that U ∈ B, so x ∈ Ũ , and

Ũ ⊆ B since U ⊆ z implies z ∈ B by assumption. Therefore B is open. �

Definition 1.14. Let A and B be coherent information systems. A
subset D ⊆ |A| is called directed if every finite subset D0 of D has an upper
bound w.r.t. ⊆ in D,1 i.e.,

∀Do ⊆fin D∃x ∈ D∀y ∈ D0 y ⊆ x.
A map f : |A| → |B| is monotone if f(x) ⊆ f(y) whenever x ⊆ y.

Lemma 1.15. Let A be a coherent information system. Then:

(1) If D ⊆ |A| is directed, then
⋃
D ∈ |A| and

⋃
D is the supremum

(w.r.t. ⊆) of D.
(2) If B ⊆ |A| is bounded (i.e., there is an x ∈ |A| such that for all

z ∈ B, z ⊆ x), then
⋃
B ∈ |A| and

⋃
B is the supremum of B.

Proof. Easy. �

Remark 1.16. Without giving the proofs or notions we note that for a
c.i.s. A, (|A|,⊆, ∅) is an algebraic, directed and bounded complete partial
order with least element ∅ — or, in other words, a Scott-Ershov domain.
We refer the reader to [43] for more details. Moreover, (|A|,⊆, ∅) possesses
the property that each subset B of |A| with x∪y consistent for all x, y ∈ B,
has a least upper bound in |A|.

Lemma 1.17. Let A and B be c.i.s. and f : |A| → |B| be a map. Then
the following are equivalent:

(1) f is continuous w.r.t. the Scott topology,
(2) f is monotone and has the principle of finite support, i.e.,

b ∈ f(x)→ ∃U ⊆ x(b ∈ f(U)),

(3) f is monotone and for all D ⊆ |A| directed,

f(
⋃
D) =

⋃
x∈D

f(x).

1Notice that directed sets are non-empty.

2. PARTIAL CONTINUOUS FUNCTIONALS 20

Proof. (1)→ (2). Suppose f is continuous and x ⊆ y. We have to show

that f(x) ⊆ f(y), so let a ∈ f(x), i.e., f(x) ∈ {̃a}. Then x ∈ f−1({̃a}) and

since f is continuous and {̃a} is open, there exists U with x ∈ Ũ ⊆ f−1({̃a}).
Now U ⊆ x ⊆ y, so y ∈ Ũ ⊆ f−1({̃a}), hence a ∈ f(y).

(2) → (3). Let D ⊆ |A| be directed. Since f is monotone it suffices to
prove

f(
⋃
D) ⊆

⋃
x∈D

f(x).

So let a ∈ f(
⋃
D); then by the principle of finite support there exists U ⊆⋃

D with a ∈ f(U). Since D is directed and U is finite there exists x ∈ D
with U ⊆ x. So a ∈ f(U) ⊆ f(x) ⊆

⋃
x∈D f(x), where the first inclusion

holds by the monotonicity of f .
(3)→ (1). Let U be a formal neighborhood of B. It suffices to show that

f−1(Ũ) is open. Let x ∈ f−1(Ũ) and Dx := {V | V ⊆ x}. Clearly, Dx is
directed and x =

⋃
Dx, and therefore by assumption we obtain U ⊆ f(x) =⋃

V⊆x f(V). By monotonicity also f(Dx) = {f(V) | V ⊆ x} is directed, so

U ⊆ f(V) for some V ⊆ x. Thus V ∈ f−1(Ũ), yielding x ∈ Ṽ ⊆ f−1(Ũ). �

Definition 1.18. Let f : |A| → |B| be continuous w.r.t. the Scott topol-

ogy. Then the ideal f̂ ∈ |BA| is defined by

f̂(U, b) :↔ b ∈ f(U).

Let r ∈ |BA| be an ideal; then we can associate a continuous map given by

|r|(z) := {b ∈ B | ∃U ⊆fin z.r(U, b)}.

Lemma 1.19. Let f : |A| → |B| be continuous and r ∈ |BA|. Then f̂

and |r| are well defined. Moreover, f = |f̂ | and r = |̂r|.

Notation. By virtue of the last lemma, we sometimes write f instead

of f̂ and r instead of |r|.

2. Partial Continuous Functionals

In this section we will define a coherent information system Cρ for each
type ρ. For this, we first introduce some notations:

Definition 2.1. An extended token is either a token or new distin-
guished symbol ∗. Extended tokens are denoted by a∗, b∗, c∗, We extend
the entailment and consistency relation to extended tokens by:

a∗^b∗ :↔ a∗ or b∗ are ∗, or otherwise a∗^b∗,

U ∪ {∗} ` a∗ :↔ U ` a∗, and

U ` ∗ is defined to be true.

Definition 2.2. The coherent information systems Cρ = (Cρ,^ ρ,`ρ)
(ρ ∈ Ty) are defined as follows. The tokens and the consistency relation are
defined inductively on the syntactic complexity by the rules:

U ∈ Conρ a ∈ Cσ
(U, a) ∈ Cρ→σ

U^ρV → a^σb

(U, a)^ρ→σ(V, b)

~b∗ ∈ C~τ ∪ {∗}
C~b∗ ∈ Cµ

~a∗^~τ
~b∗

C~a∗^µC~b∗

2. PARTIAL CONTINUOUS FUNCTIONALS 21

where in the last two rules C is a constructor of type ~τ → µ. Here U ∈ Conρ
is an abbreviation for the premises that U is finite and for all a, b ∈ U
a^ρb. Moreover, in the second rule we have left the premises U, V ∈ Conρ
and a, b ∈ Cσ implicit in our notation. The entailment relation `ρ between
formal neighborhoods and tokens of type ρ is inductively defined by the
rules:

W (V) `σ b
W `ρ→σ (V, b)

{a∗11, . . . , a
∗
n1} `τ1 b∗1 . . . {a∗1k, . . . , a∗nk} `τk b∗k
{C~a∗1, . . . , C~a∗n} `µ C~b∗

(n ≥ 1)

where in the last rule C is a constructor of type ~τ → µ and ~τ = τ1, . . . , τk.
Let Conρ denote ConCρ .

Lemma 2.3. Cρ is a coherent information system and Cρ→σ = Cσ
Cρ.

Proof. For the first statement one verifies the requirements for a c.i.s.
by induction on the derivations. The second statement immediately follows
from the definitions. �

Definition 2.4. The ideals of Cρ are called partial continuous function-
als of type ρ.

Examples. Let us consider the information systems CN and CB. The
tokens of CN are the vertices in the following Hasse diagram:

•0

•S0

•S(S0)

• S∗

• S(S∗)

..
.

Two tokens are consistent iff they have an upper bound in the diagram. A
formal neighborhood U entails a token a iff there is a b ∈ U such that b is
above a (and there is a path from b to a).

For CB the picture is much simpler:

tt • • ff

Definition 2.5. Each constructor C of type ~τ → µ induces an approx-
imable map rC defined by:

rC := {(~U,C~a∗) | ~U ` ~a∗}.

Here (~U, a) is defined by (〈〉, a) := a and (~U,U, a) := (~U, (U, a)).

Examples. Let us write S for |rS |, 0 for {0}, and ⊥ for ∅. Then the
ideals of CN are

|CN| = {⊥,∞} ∪ {Sn⊥ | n ∈ N} ∪ {Sn0 | n ∈ N},
where ∞ := {Sn∗ | n ∈ N}. Note that ∞ and all Sn0 (n ∈ N) are maximal.
The ideals of CB are |CB| = {⊥, tt, ff}, where tt = {tt} and ff = {ff}.

Lemma 2.6. (1) Let C be a constructor of type ~τ → µ and ~x, ~y ∈
|C~τ |. Then:

~x ⊆ ~y ↔ |rC |(~x) ⊆ |rC |(~y).

3. DENOTATIONAL SEMANTICS 22

(2) Let C~ρ→µ
1 , C~σ→µ2 be two distinct constructors of µ. Then |rC1 |(~x1)∩

|rC2 |(~x2) = ∅ for all ~x1 ∈ |C~ρ| and ~x2 ∈ |C~σ|.
(3) For each non-empty ideal x ∈ |Cµ| there exists a constructor C~τ→µ

and ideals ~x ∈ C~τ with x = |rC |(~x).

Proof. (1) and (2) are easy to see. We now prove (3). Since x 6= ∅
there exists a constructor C and ~d∗ with C~d∗ ∈ x, say C : ~τ → µ and
~τ = τ1, . . . , τk. For 1 ≤ i ≤ k define xi by:

xi := {a | ∃C~a∗ ∈ x. a∗i = a}.

Because x is an ideal xi is so. We claim x = |rC |(~x). One immediately
verifies x ⊆ |rC |(~x). For the converse let C~a∗ ∈ |rC |(~x), then there exist
~U ⊆ ~x with ~U ` ~a∗. For i with a∗i 6= ∗ we have a∗i ∈ xi by the deductive

closedness, so we have C~b∗i ∈ x with b∗ii = a∗i . Hence by the definition of
entailment:

x ⊇ {C~b∗i | a∗i 6= ∗} ∪ {C~d∗} ` C~a∗

where C~d∗ is only used if all a∗i are ∗. Therefore C~a∗ ∈ x because x is an
ideal. �

Lemma 2.7. For all a ∈ Cρ we have that ∅6`ρa.

Proof. Induction on ρ. In the case of a base type µ, this holds by
definition. In the case of an arrow type ρ→ σ, we have:

∅ ` (U, a)↔ {b | ∃V.(V, b) ∈ ∅ ∧ U ` V } ` a↔ ∅ ` a.

Thus the claim follows from the IH. �

Lemma 2.8. Let (~U, a), (~V , b) ∈ C~ρ→σ. Then:

{(~U, a)} ` (~V , b)↔ ~V ` ~U ∧ a ` b.

Proof. Use Lemma 2.7. �

3. Denotational Semantics

To each closed term Mσ as defined in Chapter 1, we associate a deno-
tation – or meaning – as an element [[M]] ∈ |Cσ| of the partial continuous
functionals.

Definition 3.1. Let ~P be a constructor pattern such that FV(~P) ⊆ ~x~σ,

~x distinct and ~V ∈ Con~σ. Then the substitution ~P [~V /~x] of ~V for ~x in ~P is
defined componentwise and by:

xi[~V /~x] := Vi,

(C ~P)[~V /~x] := {C~b∗ | if Pi[~V /~x] = ∅ then b∗i = ∗, otherwise b∗i ∈ Pi[~V /~x]}.

If a constructor pattern was introduced as ~P (~x), we will also write ~P (~V) for
~P [~V /~x].

3. DENOTATIONAL SEMANTICS 23

Definition 3.2 (Denotation). Let M be a term with FV(M) ⊆ ~x. We
inductively define the P–denotation [[λ~xM]]P of M ([[λ~xM]] for short) by the
clauses:

den-var
Ui ` b

(~U, b) ∈ [[λ~xxi]]
den-app

(~U, V, b) ∈ [[λ~xM]] (~U, V) ⊆ [[λ~xN]]

(~U, b) ∈ [[λ~x.MN]]

den-c
~V ` ~b∗

(~U, ~V ,C~b∗) ∈ [[λ~xC]]

den-d
(~U, ~V , b) ∈ [[λ~x, ~yM]] D~P (~y) . M ~W ` ~P (~V)

(~U, ~W, b) ∈ [[λ~xD]]

where (~U, V) ⊆ [[λ~xN]] is short for ∀b ∈ V.(~U, b) ∈ [[λ~xN]], and recall that

(~U, b) is (U1, (U2, . . . (Un, b) . . .)) for ~U = U1, . . . , Un.

The height of a derivation (~U, b) ∈ [[λ~xM]] is defined as usual, i.e., as
the supremum of the heights of the premises plus one. The D-height of a

derivation (~U, b) ∈ [[λ~xM]] is defined similarly, namely as the supremum of
all D-heights of the premises, but one is added only if the rule applied is
den-d.

Lemma 3.3. The following preserve D-height:

(1) ~V ` ~U ∧ (~U, b) ∈ [[λ~xM]]⇒ (~V , b) ∈ [[λ~xM]]

(2) ∀x /∈ FV(M).(~U,U, b) ∈ [[λ~z, x.M]]⇔ (~U, b) ∈ [[λ~zM]]

(3) ∀x /∈ FV(M).(~U,U, b) ∈ [[λ~z, x.Mx]]⇔ (~U,U, b) ∈ [[λ~zM]]

(4) (~U, ~V , b) ∈ [[λ~x, ~y.M [~P (~y)/~z]]]⇔ (~U, ~P (~V), b) ∈ [[λ~x, ~z.M]]

Proof. (1). Ind((~U, b) ∈ [[λ~xM]]).
(2). By induction on the derivations.

(3). (~U,U, b) ∈ [[λ~z, x.Mx]] comes from (~U,U, V, b) ∈ [[λ~z, x.M]] and

(~U,U, V) ⊆ [[λ~z, x.x]] for some V . Moreover, (~U,U, V) ⊆ [[λ~z, x.x]] comes

from U ` V . By (2) (~U, V, b) ∈ [[λ~zM]], and hence by (1) we conclude

(~U,U, b) ∈ [[λ~zM]].

Conversely, assume (~U,U, b) ∈ [[λ~zM]]. By (2) we obtain (~U,U, U, b) ∈
[[λ~z, x.M]]. Moreover, U ` U implies (~U,U, U) ⊆ [[λ~z, x.x]], so (~U,U, b) ∈
[[λ~z, x.Mx]] by den-app.

(4). Ind(~P). Sideind(M). The cases where M is C, D, or a variable
among ~x follow immediately from (2).

Case MN . Then the following are equivalent:

(~U, ~V , b) ∈ [[λ~x, ~y.(MN)[~P (~y)/~z]]]

⇔ ∃W.(~U, ~V ,W, b) ∈ [[λ~x, ~y.M [~P (~y)/~z]]]∧

(~U, ~V ,W) ⊆ [[λ~x, ~y.N [~P (~y)/~z]]]

SIH⇔ ∃W.(~U, ~P (~V),W, b) ∈ [[λ~x, ~zM]]∧

(~U, ~P (~V),W) ⊆ [[λ~x, ~zN]]

⇔ (~U, ~P (~V), b) ∈ [[λ~x, ~z.MN]].

3. DENOTATIONAL SEMANTICS 24

Case zi. We have to show:

(~U, ~V , b) ∈ [[λ~x, ~y.Pi(~y)]]⇔ Pi(~V) ` b.
For that we distinguish cases on Pi. Case Pi = yj . Then both sides are

equivalent to Vj ` b. Case Pi = C ~Q. Then the following are equivalent:

(~U, ~V , b) ∈ [[λ~x, ~y.C ~Q(~y)]]

⇔ (~U, ~V , b) ∈ [[λ~x, ~y.(C~u)[~Q(~y)/~u]]]

IH⇔ (~U, ~Q(~V), b) ∈ [[λ~x, ~u.C~u]]

(3)⇔ (~U, ~Q(~V), b) ∈ [[λ~xC]]

⇔ ∃~b∗(~Q(~V) ` ~b∗ ∧ C~b∗ = b)

⇔ C ~Q(~V) ` b. �

Definition 3.4. U ≈ V :↔ U ` V ∧ V ` U .

Clearly, ≈ is an equivalence relation on formal neighborhoods.

Lemma 3.5. (1) If ~U ` ~P (~V), there are ~W with ~U ≈ ~P (~W) and
~W ` ~V .

(2) If ~P1[~V1/~y1] ≈ ~P2[~V2/~y2], then ~P1 and ~P2 are unifiable and there

exists ~W such that for i = 1, 2:

(~P1ξ)[~W/~z] ≈ ~Pi[~Vi/~yi]

where ξ is a most general unifier of ~P1, ~P2 and FV(~P1ξ) ⊆ ~z.

Proof. (1). Ind(~P). Case x, 〈〉. Trivial.

Case P, ~P . Use IH.

Case C ~P . Then C ~P (~V) 6= ∅, hence also U 6= ∅. Since U^C ~P (~V) any
a ∈ U is of the form a = C~a∗ for some ~a∗. Now define

Ui := {a | ∃~a∗.C~a∗ ∈ U ∧ a = a∗i }.

Let C~U denote (C~x)[~U/~x]. We first prove:

U ≈ C~U.
So let C~a∗ ∈ C~U . We show: U ` C~a∗. Since U 6= ∅ we can assume that not

all a∗i are ∗. For each i, either Ui = ∅ and a∗i = ∗, or there exists ~b∗i with

C~b∗i ∈ U and b∗ii = a∗i . Therefore by definition:

U ⊇ {C~b∗i | a∗i 6= ∗} ` C~a∗.

Conversely, let C~a∗ ∈ U . Define C~b∗ ∈ C~U by b∗i = a∗i if a∗i 6= ∗, bi = ∗
if Ui = ∅, and otherwise (i.e., a∗i = ∗ and Ui 6= ∅) take b∗i ∈ Ui arbitrarily.

Clearly {C~b∗} ` C~a∗.
By the definition of entailment we have ~U ` ~P (~V), so by IH there exists

~W with ~U ≈ ~P (~W) and ~W ` ~V . Thus U ≈ C~U ≈ C ~P (~W).

(2). Assume ~P1[~V1/~y1] ≈ ~P2[~V2/~y2], then ~P1[~V1/~y1]^ ~P2[~V2/~y2], hence

by the definition of consistency ~P1 and ~P2 are unifiable. We prove the rest

by induction on the buildup of ~P1, ~P2. The cases where both are empty or
a variable are trivial.

3. DENOTATIONAL SEMANTICS 25

Case P, ~P and Q, ~Q. By the linearity condition on the variables of

constructor patterns it follows that a most general unifier of P, ~P and Q, ~Q

is the union of the most general unifiers of P,Q and of ~P , ~Q. So the claim
follows by IH.

Case C ~P1 and C ~P2. Then C ~P1[~V1/~y1] ≈ C ~P2[~V2/~y2] implies ~P1[~V1/~y1] ≈
~P2[~V2/~y2]. So IH suffices.

Case x and C ~P . Say U ≈ C ~P [~V /~y]. W.l.o.g. ξ(x) = C ~P and therefore

we can choose ~W := ~V . �

Lemma 3.6. [[λ~xM]] is consistent.

Proof. Let (~Ui, bi) ∈ [[λ~xM]] (i = 1, 2). We prove (~U1, b1)^(~U2, b2) by
induction on the maximum of the D-heights with a side induction on the

maximum of the heights of (~Ui, bi) ∈ [[λ~xM]].

Case den-var. Then (~U1, b1), (~U2, b2) ∈ [[λ~xxi]] from U1i ` b1 and U2i `
b2. Now assume ~U1^~U2. This implies that U1i ∪U2i ∈ Con and U1i ∪U2i `
b1, b2, hence b1^b2.

Case den-app. For i = 1, 2 we have:

den-app
(~Ui, Vi, bi) ∈ [[λ~xM]] (~Ui, Vi) ⊆ [[λ~xN]]

(~Ui, bi) ∈ [[λ~x.MN]]

Assume ~U1 ^ ~U2 then by SIH for the right premises we get V1 ^V2, and
hence by the SIH for the left premises b1^b2.

Case den-c. For i = 1, 2 we have:

den-c
~Vi ` ~b∗i

(~Ui, ~Vi, C~b∗i) ∈ [[λ~xC]]

Assume ~U1^U2 and ~V1^~V2, then ~V1 ∪ ~V2 ∈ Con and ~V1 ∪ ~V2 entails both
~b∗1 and ~b∗2. So ~b∗1^

~b∗2, i.e., C~b∗1^C~b∗2.
Case den-d. For i = 1, 2 we have:

den-d
(~Ui, ~Vi, bi) ∈ [[λ~x, ~yiMi]] D~Pi(~yi) . Mi

~Wi ` ~Pi[~Vi/~yi]
(~Ui, ~Wi, bi) ∈ [[λ~xD]]

Assume ~U1^ ~U2 and ~W1^ ~W2. We have to show b1^b2. For i = 1, 2 we

have that ~W1 ∪ ~W2 ` ~Pi[~Vi/~yi] so by Lemma 3.5 (1) there are ~V ′1 ,
~V ′2 with

~V ′i ` ~Vi and ~W1∪ ~W2 ≈ ~Pi[~V
′
i /~yi]. Now using Lemma 3.5 (2) we get ~W with

(~P1ξ)[~W/~z] ≈ ~Pi[~V
′

1/~yi]

where ξ is a most general unifier of ~P1 and ~P2. Therefore also:

(~yiξ)[~W/~z] ` ~Vi,
hence by Lemma 3.3 (1) we obtain

(~Ui, (~yiξ)[~W/~z], bi) ∈ [[λ~x, ~yiMi]]

with smaller D-height. With Lemma 3.3 (4) we get

(~Ui, ~W, bi) ∈ [[λ~x, ~z.Mi[~yiξ/~yi]]].

By our restriction on the computation rules we know that M1ξ = M2ξ and
FV(Mi) ⊆ ~yi, thus M1[(~y1ξ)/~y1] = M1ξ = M2ξ = M2[(~y2ξ)/~y2]. Hence

3. DENOTATIONAL SEMANTICS 26

we can apply the IH on (~U1, ~W, b1), (~U2, ~W, b2) ∈ [[λ~x, ~z.M1ξ]] and obtain
b1^b2. �

In order to prove the deductive closure of the denotation we need the
following generalization of Lemma 3.5 (2).

Lemma 3.7. Let ~P1, . . . , ~Pn (n ≥ 1) be constructor patterns and assume

for all 1 ≤ i, j ≤ n that ~Pi[~Vi/~yi] ≈ ~Pj [~Vj/~yj] and either ~Pi = ~Pj or FV(~Pi)∩
FV(~Pj) = ∅. Then there exist ~W and a substitution ξ such that for all
1 ≤ i ≤ n:

ξ is admissible for ~Pi, ~P1ξ = ~Piξ, and (~P1ξ)[~W/~z] ≈ ~Pi[~Vi/~yi].

Proof. Ind(n). Case n = 1. Trivial. Case n → n+ 1. By Lemma 3.5

(2) we may assume that n ≥ 2. So by IH there exist ~W and ξ such that

for all 1 ≤ i ≤ n: ξ is admissible for ~Pi, ~P1ξ = ~Piξ, and (~P1ξ)[~W/~z] ≈
Pi[~Vi/~yi]. If ~Pn+1 = ~Pi for some 1 ≤ i ≤ n, we are already done. So

assume ~Pn+1 is different from ~Pi (1 ≤ i ≤ n). Then by assumption ~Pn+1

has different variables than all ~Pi (1 ≤ i ≤ n). Therefore we can assume

w.l.o.g. that FV(~P1ξ)∩ FV(~Pn+1) = ∅ and ~Pn+1ξ = ~Pn+1 (otherwise rename

those variables in the image of ξ and restrict ξ to variables not free in ~Pn+1).
Since n ≥ 2 we have

(~P1ξ)[~W/~z] ≈ ~P2[~V2/~y2] ≈ ~Pn+1[~Vn+1/~yn+1]

by assumption. By Lemma 3.5 (2) there are ~U such that for a most general

unifier η of ~P1ξ and ~Pn+1 we have

((~P1ξ)η)[~U/~x] ≈ (~P1ξ)[~W/~z] and ((~P1ξ)η)[~U/~x] ≈ ~Pn+1[~Vn+1/~yn+1].

Thus for 1 ≤ i ≤ n:

((~P1ξ)η)[~U/~x] ≈ (~P1ξ)[~W/~z] ≈ ~Pi[~Vi/~yi] and (~P1ξ)η = (~Piξ)η.

Moreover, by our assumption on ξ:

(~Pn+1ξ)η = ~Pn+1η = (~P1ξ)η.

The substitution η ◦ ξ is admissible for all ~Pi (1 ≤ i ≤ n+ 1) because (~P1ξ)η

is a constructor pattern. So take ~U and η ◦ ξ. �

Lemma 3.8. [[λ~xM]] is deductively closed, i.e.,

W ∈ Con∧W ⊆ [[λ~xM]] ∧W ` (~V , c)→ (~V , c) ∈ [[λ~xM]].

Proof. Induction on the maximum of the D-heights with a side in-
duction on the maximum of the heights of W ⊆ [[λ~xM]]. We make a case
distinction on the last rule of the derivations (which is unique since the
definition is syntax directed, i.e., depends only on M).

Case den-var. For all (~U, b) ∈W we have

den-var
Ui ` b

(~U, b) ∈ [[λ~xxi]]
.

We must show Vi ` c. By assumption we have W ` (~V , c), i.e., W (~V) ` c.
So it suffices to show

Vi `W (~V).

3. DENOTATIONAL SEMANTICS 27

Let b ∈ W (~V), then there exist ~U with (~U, b) ∈ W and ~V ` ~U . But

(~U, b) ∈W implies Ui ` b, so Vi ` Ui ` b.
Case den-app. For W = {(~U1, b1), . . . , (~Un, bn)} and each (~Ui, bi) ∈ W

there exists Ui such that

den-app
(~Ui, Ui, bi) ∈ [[λ~xM]] (~Ui, Ui) ⊆ [[λ~xN]]

(~Ui, bi) ∈ [[λ~x.MN]]
.

Define U :=
⋃
{Ui | ~V ` ~Ui}. First, we show that U is consistent. For a, b ∈

U there exist i, j such that a ∈ Ui, b ∈ Uj , and ~V ` ~Ui, ~Uj . Then ~Ui^ ~Uj ,

so because [[λ~xN]] is consistent by Lemma 3.6 and (~Ui, a), (~Uj , b) ∈ [[λ~xN]]
we obtain a^b. So U ∈ Con.

Next we prove

(~V , U) ⊆ [[λ~xN]].

Let a ∈ U ; then a ∈ Ui for some i with ~V ` ~Ui. Let W ′ := {(~Ui, b) | b ∈ Ui},
then by our premise W ′ ⊆ [[λ~xN]] and therefore also W ′ ∈ Con. By SIH it

suffices to show that W ′ ` (~V , a), i.e., W ′(~V) ` a. But

W ′(~V) = {b | b ∈ Ui ∧ ~V ` ~Ui} = Ui ` a.

Finally we show

(~V , U, c) ∈ [[λ~xM]].

Define W ′′ := {(~Ui, Ui, bi) | 1 ≤ i ≤ n}. By assumption W ′′ ⊆ [[λ~xM]],

hence also W ′′ ∈ Con. By SIH it is enough to prove that W ′′ ` (~V , U, c),

i.e., W ′′(~V , U) ` c. Now:

W ′′(~V , U) = {bi | ~V ` ~Ui ∧ U ` Ui}

= {bi | ~V ` ~Ui} ~V ` ~Ui implies U ⊇ Ui ` Ui
= W (~V).

And W (~V) ` c since W ` (~V , c).

Altogether we use den-app and get (~V , c) ∈ [[λ~x.MN]] as required.

Case den-c. For (~U, ~U ′, C~b∗) ∈W we have

den-c
~U ′ ` ~b∗

(~U, ~U ′, C~b∗) ∈ [[λ~xC]]
.

We have to show that (~V , ~V ′, c) ∈ [[λ~xC]]. By assumption W (~V , ~V ′) ` c, i.e.,

{C~b∗ | ∃~U, ~U ′.(~U, ~U ′, C~b∗) ∈W ∧ ~V ` ~U ∧ ~V ′ ` ~U ′} ` c.

So by the definition of entailment there exists ~c∗ with c = C~c∗ and

Wi := {b | ∃~U, ~U ′,~b∗.b∗i = b ∧ (~U, ~U ′, C~b∗) ∈W ∧ ~V ` ~U ∧ ~V ′ ` ~U ′} ` c∗i .

We need ~V ′ ` ~c∗. Given i, it suffices to prove V ′i ` Wi. Let b ∈ Wi, then

there exist ~U, ~U ′, and ~b∗ such that b∗i = b, (~U, ~U ′, C~b∗) ∈ W and ~V ′ ` ~U ′.
Therefore, since ~U ′ ` ~b∗:

V ′i ` U ′i ` b∗i = b.

4. PRESERVATION OF VALUES 28

Case den-d. Let W = {(~U1, ~U
′′
1 , b1), . . . , (~Un, ~U

′′
n , bn)}. Then for each i

there exist ~U ′i such that

den-d
(~Ui, ~U

′
i , bi) ∈ [[λ~x, ~yiMi]] D~Pi(~yi) . Mi

~U ′′i ` ~Pi[~U ′i/~yi]
(~Ui, ~U ′′i , bi) ∈ [[λ~xD]]

.

Assume W ` (~V , ~V ′′, c). We have to prove (~V , ~V ′′, c) ∈ [[λ~xD]]. Define

I := {i | 1 ≤ i ≤ n ∧ ~V ` ~Ui ∧ ~V ′′ ` ~U ′′i }.

Then {bi | i ∈ I} = W (~V , ~V ′′) ` c, so by Lemma 2.7 I 6= ∅, w.l.o.g. 1 ∈ I.

For i ∈ I we have ~V ′′ ` ~U ′′i ` ~Pi[~U
′
i/~yi], and therefore by Lemma 3.5 (1)

there are ~V ′i with ~V ′i ` U ′i and ~V ′′ ≈ ~Pi[~V
′
i /~yi]. In particular, for all i, j ∈ I:

~Pi[~V
′
i /~yi] ≈ ~V ′′ ≈ ~Pj [~V

′
j /~yj].

Hence ~Pi and ~Pj are unifiable and thus, by our restriction on the computation
rules, are either equal or have distinct variables. So we have verified that

we can apply Lemma 3.7 and get a substitution ξ and ~W such that for all
i ∈ I:

P1ξ = Piξ and (~P1ξ)[~W/~z] ≈ ~Pi[~V
′
i /~yi].

Let i ∈ I. Then ξ factors through the most general unifier of ~P1 and ~Pi,

so we get M1ξ = Miξ. Furthermore, (~yiξ)[~W/~z] ` ~V ′i ` ~U ′i . Applying
Lemma 3.3 (1) we get

(~V , (~yiξ)[~W/~z], bi) ∈ [[λ~x, ~yiMi]].

Therefore by Lemma 3.3 (4) we obtain (with a smaller D-height)

(~V , ~W, bi) ∈ [[λ~x, ~z.Mi[~yiξ/~yi]]].

But Mi[~yiξ/~yi] = Miξ = M1ξ = M1[~y1ξ/~y1] and thus we have

∀i ∈ I.(~V , ~W, bi) ∈ [[λ~x, ~z.M1[~y1ξ/~y1]]].

Now X := {(~V , ~W, bi) | i ∈ I} ⊆ [[λ~x, ~z.M1[~y1ξ/~y1]]] is a formal neighbor-
hood by Lemma 3.6 and

X(~V , ~W) = {bi | i ∈ I} = W (~V , ~V ′′) ` c.

So by IH we get that (~V , ~W, c) ∈ [[λ~x, ~z.M1[~y1ξ/~y1]]]. By Lemma 3.3 (4) we

obtain (~V , (y1ξ)[~W/~z], c) ∈ [[λ~x, ~y1M1]]. Together with ~V ′′ ≈ (~P1ξ)[~W/~z] =
~P1[(~y1ξ)[~W/~z]/~y1] and den-d we can conclude (~V , ~V ′′, c) ∈ [[λ~xD]]. �

Corollary 3.9. [[λ~xM]] is an ideal.

4. Preservation of Values

In this section we show that our reduction relation −→ is correct w.r.t.
our denotational semantics (see Section 3), in the sense that, if a term
reduces to another one, their denotations are equal. It is convenient to
extend the denotation to open terms (i.e., terms with free variables) via an
assignment of the free variables.

4. PRESERVATION OF VALUES 29

Definition 4.1. (1) Let θ : Var→
⋃
τ∈Ty|Cτ |. Then θ is called an

environment of ideals if θ(xτ) ∈ |Cτ | for each xτ ∈ Varτ and the
support supp(θ) := {x | θ(x) 6= ∅} is finite. We usually write θ for
an environment of ideals.

(2) Let ~x~ρ be distinct variables, ~v ∈ |C~ρ| be ideals, and θ an environ-
ment of ideals. The update θ[~x 7→ ~v] of θ is defined as

(θ[~x 7→ ~v])(x) :=

{
vi if x = xi,

θ(x) otherwise.

(3) θ ⊆ θ′ :↔ ∀x ∈ Var(θ(x) ⊆ θ′(x)).
(4) For FV(M) ⊆ ~x we define

[[M]]θ := {b | ∃~U ⊆ θ(~x) (~U, b) ∈ [[λ~xM]]},

where θ(~x) = θ(x1), . . . , θ(xn) for ~x = x1, . . . , xn.

Note that, by Lemma 3.3 (1), [[M]]θ does not depend on the choice of ~x,
and hence is well defined. Moreover, we get the following:

Lemma 4.2 (Coincidence).

∀x ∈ FV(M)(θ(x) = θ′(x))→ [[M]]θ = [[M]]θ′ .

Lemma 4.3 (Monotonicity).

θ′ ⊇ θ ∧ U ⊆ [[M]]θ ∧ U ` a→ a ∈ [[M]]θ′ .

Proof. Let FV(M) ⊆ ~x. Then we have

∀b ∈ U∃~U ⊆ θ(~x).(~U, b) ∈ [[λ~xM]].

Now since U is finite, θ(~x) and [[λ~xM]] are ideals, we get ~W ⊆ θ(~x) (taking

for ~W the union of all ~U ’s) so that:

∀b ∈ U.(~W, b) ∈ [[λ~xM]].

But {(~W, b) | b ∈ U} ` (~W, a) since U ` a. Therefore (~W, a) ∈ [[λ~xM]] by
the deductive closure of [[λ~xM]]. So a ∈ [[M]]θ ⊆ [[M]]θ′ . �

Corollary 4.4. [[M]]θ is an ideal.

Proof. We only need to check consistency. Let FV(M) ⊆ ~x and a, b ∈
[[M]]θ. By definition there are ~U, ~V ⊆ θ(~x) with (~U, a), (~V , b) ∈ [[λ~xM]].

Because θ(~x) are ideals we obtain ~U ^ ~V . So a ^ b since [[λ~xM]] is an
ideal. �

Lemma 4.5. (1) [[x]]θ = θ(x).
(2) [[λxM]]θ = {(V, b) | b ∈ [[M]]θ[x 7→V]}.
(3) [[MN]]θ = [[M]]θ[[N]]θ.

Proof. (1). Easy.

4. PRESERVATION OF VALUES 30

(2). Let FV(λxM) ⊆ ~x, w.l.o.g. x is distinct from ~x. Then:

[[λxM]] = {(V, b) | ∃~U ⊆ θ(~x).(~U, V, b) ∈ [[λ~x, xM]]}
(∗)
= {(V, b) | ∃~U ⊆ θ(~x)∃W.V `W ∧ (~U,W, b) ∈ [[λ~x, xM]]}

= {(V, b) | ∃~U,W ⊆ (θ[x 7→ V])(~x, x).(~U,W, b) ∈ [[λ~x, xM]]}
= {(V, b) | b ∈ [[M]]θ[x 7→V]},

where at (∗) we have used that [[λ~x, xM]] is deductively closed.
(3). Let FV(MN) ⊆ ~x. Then:

b ∈ [[MN]]θ ↔ ∃~U ⊆ θ(~x).(~U, b) ∈ [[λ~x.MN]]

↔ ∃~U ⊆ θ(~x)∃U.(~U,U, b) ∈ [[λ~xM]] ∧ (~U,U) ⊆ [[λ~xN]]

↔ ∃U∃~U ⊆ θ(~x).(~U,U, b) ∈ [[λ~xM]] ∧ (~U,U) ⊆ [[λ~xN]]

↔ ∃U.(U, b) ∈ [[M]]θ ∧ U ⊆ [[N]]θ

↔ b ∈ [[M]]θ[[N]]θ,

where in the upwards direction of the second to last equivalence, we have
used that the θ(x)’s are ideals. �

Lemma 4.6. [[λxM]]θ(v) = [[M]]θ[x 7→v].

Proof. Let FV(M) ⊆ ~x and assume w.l.o.g. x is distinct from ~x. Then:

b ∈ [[λxM]]θ(v)↔ ∃V ⊆ v.(V, b) ∈ [[λxM]]θ

↔ ∃V ⊆ v∃~U ⊆ θ(~x).(~U, V, b) ∈ [[λ~x, xM]]

↔ ∃~U, V ⊆ (θ[x 7→ v])(~x, x).(~U, V, b) ∈ [[λ~x, xM]]

↔ b ∈ [[λxM]]θ[x 7→v]. �

Lemma 4.7 (Substitution). [[M]]θ[~z 7→[[~N]]θ] = [[M [~N/~z]]]θ.

Proof. Ind(M). The cases where M is a constant are trivial. The ap-
plication and variable cases follow easily from Lemma 4.5 using IH in the

former. For the case λxM assume FV(λxM) ⊆ ~x and w.l.o.g. x /∈ FV(~N, ~z).
By the Coincidence Lemma we get

[[~N]]θ = [[~N]]θ[x 7→U].

Using Lemma 4.5 (2) we conclude:

(U, b) ∈ [[λxM]]θ[~z 7→[[~N]]θ] ↔ b ∈ [[M]]θ[~z 7→[[~N]]θ][x 7→U]

↔ b ∈ [[M]]θ[x 7→U][~z 7→[[~N]]θ[x 7→U]]

IH↔ b ∈ [[M [~N/~z]]]θ[x 7→U]

↔ (U, b) ∈ [[λx.M [~N/~z]]]θ. �

Corollary 4.8 (Preservation under β). [[(λxM)N]]θ = [[M [N/x]]]θ.

Proof. Using the preceding lemmas we calculate:

[[(λxM)N]]θ = [[λxM]]θ[[N]]θ = [[M]]θ[x7→[[N]]θ] = [[M [N/x]]]θ. �

5. OPERATIONAL SEMANTICS AND COMPUTATIONAL ADEQUACY 31

Lemma 4.9 (Preservation under η). If x /∈ FV(M), then

[[λx.Mx]]θ = [[M]]θ.

Proof. Use Lemma 3.3 (3). �

Lemma 4.10. Let D~P (~y) . M be a computation rule. Then:

[[λ~y.D ~P (~y)]] = [[λ~yM]].

Proof. First observe that

(~V , b) ∈ [[λ~y.D ~P (~y)]]↔ (~P (~V), b) ∈ [[λ~z.D~z]] = [[D]]

by Lemma 3.3 (4) and (3). Now if (~P (~V), b) ∈ [[D]], there exist ~U such that

(~U, b) ∈ [[λ~yM]] and ~P (~V) ` ~P (~U), hence also ~V ` ~U . By the deductive

closure of the denotation we obtain (~V , b) ∈ [[λ~yM]].

Conversely, (~V , b) ∈ [[λ~yM]] yields (~P (~V), b) ∈ [[D]] by den-d. �

Corollary 4.11. If M −→ N , then [[M]]θ = [[N]]θ.

Proof. By induction on M −→ N using the preceding lemmas. �

5. Operational Semantics and Computational Adequacy

In this section we introduce a deterministic reduction relation −→d –
our operational semantics –, which is computationally adequate w.r.t. the
denotational semantics. This asserts that denotational semantics and opera-
tional semantics coincide, in the sense that a closed term M is denotationally
equal to a numeral if and only if it reduces with −→∗d to that numeral.

In the following B ranges over constructors and defined constants. Let
rdxP be the set of all P-redexes.

Definition 5.1 (nfPd). We inductively define M ∈ nfPd , where we write

nf for nfPd :

x ~M ∈ nf λxM ∈ nf

| ~M | < |ar(B)|
B ~M ∈ nf

~M ∈ nf | ~M | = |ar(B)| B ~M /∈ rdxP

B ~M ~N ∈ nf

Definition 5.2 (−→Pd). The relation −→Pd is inductively defined by:

pred-beta
(λxM)N −→d M [N/x]

pred-d
D~P (~y) . M

D~P (~N) −→d M [~N/~y]

pred-cong-l
M −→d M

′

MN −→d M ′N

pred-const-par
~M −→d!

~N | ~M | = |ar(B)| ∃i(Mi /∈ nf) B ~M /∈ rdxP

B ~M −→d B ~N

where we have written −→d for −→Pd , and M −→d! N is defined as either
M ∈ nf and M = N , or M −→d N . We write M 6−→d for ∀N¬(M −→d N),
i.e., M is normal w.r.t. −→d.

Lemma 5.3. (1) M 6−→d⇔M ∈ nf.

5. OPERATIONAL SEMANTICS AND COMPUTATIONAL ADEQUACY 32

(2) The relation −→d is deterministic, i.e.,

M −→d N1, N2 ⇒ N1 = N2.

(3) −→d⊆−→∗.

Proof. The first statement is proved by induction on M .
For the second statement observe that M −→d Ni must be derived by

the same rule for i = 1, 2 (by case distinction on M using (1)). Now the
claim follows by induction on M −→d N1, N2, where in the case pred-d we
need the restriction for overlapping computation rules.

The last statement is easily proved by induction on M −→d N . �

Computational Adequacy. One direction of adequacy is the correct-
ness of −→d (i.e., −→d preserves values), which immediately follows from
the fact that −→d is contained in −→∗ and the latter preserves values. We
now prove the other direction by means of an “operational interpretation”
(cf. [28]). The Adequacy Theorem was first proved by Plotkin for PCF in
[33] using computability predicates; our proof is based on [36] but adapted
to our setting.

Definition 5.4. We inductively define when a closed term M of type
τ belongs to the operational interpretation of a token a of type τ , M ∈ [a],
where for a formal neighborhood U of type τ , M ∈ [U] is defined as ∀a ∈
U(M ∈ [a]), and M ∈ [∗] is true by definition. The rules are:

oint-base
~M ∈ [~b∗] M −→∗d C ~M

M ∈ [C~b∗]

oint-arr
M −→∗d M ′ 6−→d ∀N ∈ [U](MN ∈ [b])

M ∈ [(U, b)]

Lemma 5.5 (Monotonicity and Expansion). Let M be closed. Then:

M −→∗d N ∧N ∈ [V] ∧ V ` U ⇒M ∈ [U].

Proof. Induction on the type of M with a side induction on N ∈ [V].
Let b ∈ U ; we have to prove M ∈ [b].

Case µ. Then V = {C~a∗1, . . . , C~a∗n} (n ≥ 1) and b = C~b∗ with

{a∗1j , . . . , a∗nj} ` b∗j .

And for each 1 ≤ i ≤ n there are ~Ni with

oint-base
~Ni ∈ [~a∗i] N −→∗d C ~Ni

N ∈ [C~a∗i]
.

Since −→d is deterministic there exists i0 such that for all 1 ≤ i ≤ n,

C ~Ni0 −→∗d C ~Ni, and hence ~Ni0 −→∗d ~Ni ∈ [~a∗i]. By SIH we get ~Ni0 ∈ [~b∗].

Moreover, M −→∗d N −→∗d C ~Ni0 and thus M ∈ [C~b∗] by oint-base.
Case ρ → σ. Then b = (U ′, b′) with V (U ′) ` b′. Moreover, there exists

N ′ such that for all (V ′, a′) ∈ V :

oint-arr
N −→∗d N ′ 6−→d ∀K ∈ [V ′](NK ∈ [a′])

N ∈ [(V ′, a′)]
.

5. OPERATIONAL SEMANTICS AND COMPUTATIONAL ADEQUACY 33

It is enough to prove that

∀K ∈ [U ′](MK ∈ [b′]).

Let K ∈ [U ′]. By IH and V (U ′) ` b′ it suffices to show MK ∈ [V (U ′)]. So
let a′ ∈ V (U ′). Then there is a V ′ with (V ′, a′) ∈ V and U ′ ` V ′. From
the IH we get K ∈ [V ′], and hence NK ∈ [a′]. Moreover, by pred-cong-l,
MK −→∗d NK, so the IH yields MK ∈ [a′] as required. �

Corollary 5.6 (Closure under reduction).

M ∈ [a] ∧M −→d N ⇒ N ∈ [a].

Proof. Induction on M ∈ [a].
Case oint-base.

~M ∈ [~b∗] M −→∗d C ~M

M ∈ [C~b∗]

Then also C ~M ∈ [C~b∗] and because −→d is deterministic either N −→∗d C ~M

or C ~M −→d C ~N = N with ~M −→d!
~N . In the first case we are done by

the Expansion Lemma, so assume the latter. By IH we have ~N ∈ [~b∗], hence

N = C ~N ∈ [C~b∗].
Case oint-arr.

M −→∗d M ′ 6−→d ∀K ∈ [U](MK ∈ [b])

M ∈ [(U, b)]

For K ∈ [U] we have MK ∈ [b] and MK −→∗d M ′K. Hence by IH M ′K ∈ [b]
and therefore M ′ ∈ [(U, b)]. Since M ′ 6−→d we conclude M −→d N −→∗d M ′,
so N ∈ [(U, b)] by the Expansion Lemma. �

Lemma 5.7. λ~xM ∈ [(~U, b)]⇔ ∀ ~K ∈ [~U](M [~K/~x] ∈ [b]).

Proof. The corollary and the lemma before imply that

(λxM)K ∈ [b]⇔M [K/x] ∈ [b].

Using this the claim follows by induction on the length of ~x. �

Lemma 5.8. (1) ∀~L ∈ [~V](C~L ∈ [C~b∗])⇒ C ∈ [(~V ,C~b∗)]

(2) ~L −→≤md
~P (~N)⇒ ∀n ≥ m∃ ~N ′. ~N −→∗d ~N ′ ∧ ~L −→n

d!
~P (~N ′)

(3) ~L ∈ [~P (~b∗)]⇒ ∃ ~N ∈ [~b∗]∃n ≥ 0.~L −→n
d!
~P (~N)

(4) ~L ∈ [~P (~V)]⇒ ∃ ~N ∈ [~V]∃n ≥ 0.~L −→n
d!
~P (~N)

Proof. (1). We prove more generally

∀~L ∈ [~U](C~L ∈ [(~V ,C~b∗)])⇒ C ∈ [(~U, ~V ,C~b∗)]

for all ~U by induction on |~U |. In the case 〈〉, there is nothing to prove. In

the case ~U,U assume

∀~L,L ∈ [~U,U](C~LL ∈ [(~V ,C~b∗)]).

Then for ~L ∈ [~U] we have C~L 6−→d and C~LL ∈ [(~V ,C~b∗)] for each L ∈ [U].

Hence C~L ∈ [(U, ~V ,C~b∗)] by oint-arr. So the claim follows immediately
from IH.

(2). Ind(~P). The cases x, 〈〉, and P, ~Q are immediate.

5. OPERATIONAL SEMANTICS AND COMPUTATIONAL ADEQUACY 34

Case C ~P . Assume L −→m
d C ~P (~N). Since ~P (~N) −→0

d
~P (~N) the IH

yields for n ≥ 0, that there exists ~N ′ such that ~N −→∗d ~N ′ and ~P (~N) −→n
d!

~P (~N ′), which implies C ~P (~N) −→n
d! C

~P (~N ′), so L −→n+m
d! C ~P (~N ′).

(3). Ind(~P). The cases x and 〈〉 are trivial.

Case P, ~Q. Use IH, (2), and closure under reduction.

Case C ~P . Recall that C ~P is of base type, so L ∈ [C ~P (~b∗)] implies

L −→m
d C~L for some m ≥ 0 with ~L ∈ [~P (~b∗)]. By IH there exists n and

~N ∈ [~b∗] such that ~L −→n
d!
~P (~N), so C~L −→n

d! C
~P (~N) by pred-const-par,

hence ~L −→n+m
d! C ~P (~N).

(4). Use (3) together with the fact that each Vi is finite and closure
under expansion and reduction. �

Theorem 5.9 (Adequacy). (~U, b) ∈ [[λ~xM]]⇒ λ~xM ∈ [(~U, b)].

Proof. Induction on (~U, b) ∈ [[λ~xM]].
Case den-var.

Ui ` b
(~U, b) ∈ [[λ~xxi]]

We have to show that λ~xxi ∈ [(~U, b)], i.e., ∀ ~K ∈ [~U]Ki ∈ [b]. Let ~K ∈ [~U],
in particular, Ki ∈ [Ui]. Thus Ui ` b and Lemma 5.5 imply Ki ∈ [b].

Case den-app.

(~U, V, b) ∈ [[λ~xM]] (~U, V) ⊆ [[λ~xN]]

(~U, b) ∈ [[λ~x.MN]]

By IH for λ~xN we have λ~xN ∈ [(~U, c)] for each c ∈ V , so

(3) ∀ ~K ∈ [~U].N [~K/~x] ∈ [V].

We have to show that λ~x.MN ∈ [(~U, b)], i.e.,

∀ ~K ∈ [~U].(MN)[~K/~x] ∈ [(V, b)].

Let ~K ∈ [~U]. The IH for λ~xM yields M [~K/~x] ∈ [(V, b)], which by definition

implies (M [~K/~x]L ∈ [b]) for all L ∈ [V]. So the claim follows, since by (3),

N [~K/~x] ∈ [V].
Case den-c.

~V ` ~b∗

(~U, ~V ,C~b∗) ∈ [[λ~xC]]

Using Lemma 5.8 (1) it suffices to show that

∀ ~K ∈ [~U]∀~L ∈ [~V](C~L ∈ [C~b∗]).

Let ~K ∈ [~U] and ~L ∈ [~V]. Thus ~L ∈ [~b∗] by monotonicity and ~V ` ~b∗. So by

definition C~L ∈ [C~b∗] as required.
Case den-d.

(~U, ~V , b) ∈ [[λ~x, ~yM]] D~P (~y) . M ~W ` ~P (~V)

(~U, ~W, b) ∈ [[λ~xD]]

Let ~L ∈ [~W]. By monotonicity we get ~L ∈ [~P (~V)]. We have to show D~L ∈
[b]. By Lemma 5.8 (4) there are ~N ∈ [~V] and n ≥ 0 such that ~L −→n

d!
~P (~N).

6. TOTALITY AND THE DENSITY THEOREM 35

In particular, D~P (~N) is a P-redex. Let m ≤ n be minimal such that there

exists ~K with D~P (~K) a P-redex and ~L −→m
d!

~P (~K) −→n−m
d!

~P (~N). For

such a ~K we also have ~K −→∗d!
~L and thus ~K ∈ [~V]. Furthermore, we get by

the minimality of m together with pred-const-par that D~L −→∗d D~P (~K),

hence D~L −→∗d M [~K/~y]. We conclude from the IH and ~K ∈ [~V] that

M [~K/~y] ∈ [b], and hence D~L ∈ [b] by Lemma 5.5. �

6. Totality and the Density Theorem

In classical recursion theory the notion of partiality is external in the
sense that one considers partial functions taking values in a codomain of
total objects (usually the natural numbers). In our (higher type) setting,
each |C|ρ contains partial objects (e.g., ⊥ := ∅) and thus partiality can be
seen as an internal notion. In this section we single out the total ideals
among the partial continuous functionals and prove that they are dense
w.r.t. the Scott topology.

6.1. Total ideals.

Definition 6.1. We inductively define the set Gρ ⊆ |Cρ| of total ideals
of type ρ by:

tot-base
~z ∈ G~τ

|rC |(~z) ∈ Gµ
tot-arr

∀z ∈ Gρ(|f |(z) ∈ Gσ)

f ∈ Gρ→σ

where in the first rule the constructor C has type ~τ → µ. Moreover, we
inductively define a binary relation ∼ρ on total ideals of type ρ by:

~z1 ∼~τ ~z2

|rC |(~z1) ∼µ |rC |(~z2)

∀z ∈ Gρ(|f |(z) ∼σ |g|(z))
f ∼ρ→σ g

where again in the first rule the constructor C has type ~τ → µ. If no
confusion may arise, we omit the subscripts of ∼ρ and Gρ.

As an immediate consequence from the definition, we note that ∼ρ is an
equivalence relation on Gρ.

The total ideals of |CN| are GN = {Sn0 | n ∈ N} and hence can be
identified with N. Notice that each x ∈ GN is maximal but there is a
maximal ideal which is not total, namely∞. In addition, not all total ideals
are maximal: the deductive closure of {({Sn0}, 0) | n ∈ N} is total but not
maximal because it is properly contained in the deductive closure of {(∅, 0)}.

We now prove that ∼ is compatible with application. The proof pre-
sented here is due to Longo and Moggi [27]. An alternative proof uses the
Density Theorem (cf. Remark 6.13).

Lemma 6.2. If f ∈ Gρ, g ∈ |Cρ|, and f ⊆ g, then g ∈ Gρ.

Proof. Ind(f ∈ Gρ). Case tot-base. Then f = |rC |(~z) for some total
~z. Clearly, C~∗ ∈ f ⊆ g, hence by Lemma 2.6 (3) there are ideals ~x with
g = |rC |(~x). Using Lemma 2.6 (1) we get ~z ⊆ ~x, so by IH ~x are total and
therefore also |rC |(~x) = g.

6. TOTALITY AND THE DENSITY THEOREM 36

Case tot-arr. Let z ∈ Gρ, then |f |(z) ∈ Gσ. But:

|f |(z) = {b | ∃U ⊆ z.(U, b) ∈ f}
⊆ {b | ∃U ⊆ z.(U, b) ∈ g} since f ⊆ g
= |g|(z).

Therefore by IH |g|(z) ∈ Gσ, which is the desired conclusion. �

Lemma 6.3. For all f, g ∈ |Cρ→σ|, and x ∈ |Cρ| we have

|f ∩ g|(x) = |f |(x) ∩ |g|(x).

Proof. The following holds:

|f ∩ g|(x) = {b | ∃U ⊆ x.(U, b) ∈ f ∩ g}
(∗)
= {b | ∃U ⊆ x.(U, b) ∈ f} ∩ {b | ∃U ⊆ x.(U, b) ∈ g}
= |f |(x) ∩ |g|(x)

where at (∗) the inclusion from left to right is trivial. For the converse
direction, let (U, b) ∈ f and (V, b) ∈ g with U, V ⊆ x. Then also U ∪ V ⊆ x
and thus U ∪ V is consistent and we have that (U ∪ V, b) ∈ f ∩ g because
both {(U, b)} and {(V, b)} entail (U ∪ V, b). �

Lemma 6.4. For all f, g ∈ Gρ, f ∼ρ g if and only if f ∩ g ∈ Gρ.

Proof. Ind(f, g ∈ Gρ). Case tot-base. ⇒: Assume f ∼µ g then there
exists a constructor C and total ideals ~x, ~y with f = |rC |(~x), g = |rC |(~y),
and ~x ∼ ~y. By IH ~x ∩ ~y are total, hence also |rC |(~x ∩ ~y). Furthermore,

|rC |(~x ∩ ~y) ⊆ |rC |(~x) ∩ |rC |(~y)

and the claim follows from Lemma 6.2.
⇐: Because f, g ∈ Gµ we have f = |rC′ |(~x) and g = |rC′′ |(~y) for some

total ideals ~x, ~y. Now assume f ∩ g ∈ Gµ. By definition there exist total
ideals ~z and a constructor C such that f ∩ g = |rC |(~z). Hence C = C ′ = C ′′

and by Lemma 2.6 (1) we get ~z ⊆ ~x∩ ~y. Therefore by Lemma 6.2 the ideals
~x ∩ ~y are total. Now the IH yields ~x ∼ ~y, so |rC |(~x) ∼µ |rC |(~y) as required.

Case tot-arr.

f ∼ρ→σ g ↔ ∀x ∈ Gρ(|f |(x) ∼σ |g|(x))

↔ ∀x ∈ Gρ(|f |(x) ∩ |g|(x) ∈ Gσ) by IH

↔ ∀x ∈ Gρ(|f ∩ g|(x) ∈ Gσ) by Lemma 6.3

↔ f ∩ g ∈ Gρ→σ. �

Theorem 6.5. For all x, y ∈ Gρ, and f ∈ Gρ→σ, x ∼ρ y implies
|f |(x) ∼σ |f |(y).

Proof. If x ∼ρ y, then x∩y ∈ Gρ by Lemma 6.4 and hence |f |(x∩y) ∈
Gσ. Because of |f |(x ∩ y) ⊆ |f |(x) ∩ |f |(y) we obtain |f |(x) ∩ |f |(y) ∈ Gσ.
Again using Lemma 6.4, we conclude |f |(x) ∼σ |f |(y). �

6. TOTALITY AND THE DENSITY THEOREM 37

6.2. The Density Theorem. The Density Theorem says that Gρ ⊆
|Cρ| is dense w.r.t. the Scott topology on |Cρ|. Equivalently, this can be
stated as

∀U ∈ Conρ ∃x ∈ Gρ U ⊆ x.
Clearly, this requires that each Gρ is non-empty. In general, this is not
satisfied for all types (e.g., consider the type µα(α → α)). Therefore we
assume in the remaining part of this chapter that all base types are inhabited .
More precisely, we require for all simultaneously defined algebras ~µ = µ~α.~κ
and αj that there exists a constructor type κ ∈ ~κ with

κ = ~ρ→ (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj

and for all αji we have ji < j. It is easily seen by induction on the type that
for each type there is a closed term of that type whose denotation is total
and therefore each Gρ is inhabited.

The Density Theorem is due to Kreisel [26]; our proof is based on
Berger’s [3] and incorporates ideas from Schwichtenberg [36]. We improve
on [36] by allowing arbitrary (inhabited) base types.

Definition 6.6. We simultaneously define the depth of an extended
token and of a formal neighborhood by

dp(∅) := dp(∗) := 0, dp(U) := max{dp(a) | a ∈ U} for U 6= ∅,
dp(C~a∗) := max dp(~a∗) + 1, and dp((U, a)) := max{dp(U),dp(a)}+ 1.

Remark 6.7. If U ∈ Conµ is non-empty, there exists a constructor C

such that C~U ` U and dp(~U) < dp(U), where Ui := {a | ∃C~a∗ ∈ U.a = a∗i }
and C~U := (C~x)[~U/~x]. Note that we also have U ` C~U . (Cf. the proof of
Lemma 3.5 (1).)

We extend inconsistency to arbitrary sets of tokens x and y by

x 6̂ y :↔ ∃a ∈ x∃b ∈ y a 6̂ b.

Lemma 6.8. For all U, V ∈ Conρ:

(i) ∃x ∈ Gρ(U ⊆ x), and

(ii) U 6̂ V → ∃z ∈ Gρ→B z(U) 6̂ z(V).

Proof. Induction on max{dp(U), dp(V)} with a case distinction on the
type ρ. Case µ. If U = ∅, both statements are trivial (here we need the
assumption that each base type has total ideals). So assume U 6= ∅. By the

remark above, there is a constructor C and ~U with C~U ` U , dp(~U) < dp(U),
and the Ui are the corresponding components of tokens in U .

(i). By IH (i) for ~U , there are total ideals ~x with ~U ⊆ ~x. For x :=

|rC |(~x) ∈ Gµ, we have U ⊆ x because C~U ⊆ x and C~U ` U .
(ii). Assume U 6̂ V . Note that V 6= ∅, and therefore by the remark

above there is a constructor C ′ and ~V with C ′~V ` V , dp(~V) < dp(V),
and the Vi are the corresponding components of tokens in V . Then also

C~U 6̂ C ′~V .
Subcase C ′ 6= C. Using computation rules, it is easy to see that there is

a total z ∈ Gρ→B with z(C~x) = tt and z(C ′′~y) = ff for each constructor C ′′

of µ different from C. Then z(U) = tt 6̂ ff = z(V).

6. TOTALITY AND THE DENSITY THEOREM 38

Subcase C ′ = C. Then there is some i with Ui 6̂ τVi. By IH (ii) there
exists z′ ∈ Gτ→B with z′(U i) 6̂ z′(V i). Clearly, there is a total p ∈ Gµ→τ
satisfying p(C~x) = xi and p(C ′′~y) = y for each constructor C ′′ 6= C of µ
where y is an arbitrary but fixed total ideal of type τ . Then z := z′ ◦ p is
total and has the desired property.

Case ρ → σ. (ii). Let W1,W2 ∈ Conρ→σ and suppose W1 6̂ W2. Then
there are (Ui, ai) ∈Wi (i = 1, 2) with U1^U2 and a1 6̂ a2. Because

dp(U1 ∪ U2) < max{dp(W1), dp(W2)}

the IH (i) yields x ∈ Gρ with U1 ∪U2 ⊆ x. Since W 1(x) 3 a1 6̂ a2 ∈W 2(x)

and IH (ii) there is a total z′ ∈ Gσ→B with z′({a1}) 6̂ z′({a2}). Hence also
z′(W 1(x)) 6̂ z′(W 2(x)), so take z ∈ G(ρ→σ)→B defined by z(y) := z′(yx).

(i). Let W = {(Ui, ai) | i ∈ I} ∈ Conρ→σ. For i, j ∈ I with ai 6̂ aj , we
also have Ui 6̂ Uj . By IH (ii) there exists zij ∈ Gρ→B such that

(4) kij := zij(U i) 6̂ zij(U j) =: lij .

We may choose zij = zji, thus also kij = lji and lij = kji. Since kij 6̂ kji we
have {kij , kji} = {tt, ff} = GB. Hence all kij ’s are maximal and finite ideals.

Given U ∈ Conρ we define

IU := {i ∈ I | ∀j ∈ I(ai 6̂ aj → zij(U) ⊇ kij)}

and WU := {ai | i ∈ IU}. We first prove that WU ∈ Conσ. Let i, j ∈ IU
and suppose ai 6̂ aj . Because i ∈ IU we have zij(U) ⊇ kij , and because

j ∈ IU we conclude zji(U) ⊇ kji. But zij = zji, so we obtain that zij(U)
is inconsistent by (4), a contradiction. Hence ai^aj . This completes the
proof of WU ∈ Conσ.

Note that dp(WU) < dp(W), thus by IH (i) there exists yU ∈ Gσ with
WU ⊆ yU . Define the relation r ⊆ Conρ×Cσ by

r(U, a) :↔

{
a ∈ yU if ∀i, j(ai 6̂ aj → zij(U) is total),

WU ` a otherwise.

We will now show that r is an approximable map which is total and extends
W .

For W ⊆ r we have to show r(Ui, ai) for all i ∈ I. By definition zij(U i) =
kij and hence i ∈ IUi which clearly yields r(Ui, ai).

We now prove that

(5) r(U, b1) ∧ r(U, b2)→ b1^b2.

So assume the premises. If zij(U) is total for all i and j with ai 6̂ aj ,
then b1, b2 ∈ yU . So b1 ^ b2 because yU is an ideal. Otherwise, we have
WU ` b1, b2, hence b1^b2, which concludes the proof of (5).

Next, we prove

(6) V1 ` V2 ∧ r(V2, U) ∧ U ` b→ r(V1, b).

Assume the premises. Because of V1 ` V2 we obtain zij(V 1) ⊇ zij(V 2) so

in particular, IV2 ⊆ IV1 . If all zij(V 2) are total, then so are all zij(V 1) ⊇
zij(V 2). Because each ideal in GB is maximal we obtain zij(V 1) = zij(V 2)
and hence IV2 = IV1 . In this case, r(V2, U) yields U ⊆ yV2 . So U ⊆ yV2 = yV1

6. TOTALITY AND THE DENSITY THEOREM 39

and hence b ∈ yV1 , i.e., r(V1, b). In the other case we have WV2 ` U ` b, but
WV1 ⊇WV2 so r(V1, b) in any case. This finishes the proof of (6).

By (5) and (6), r is an approximable map. It remains to prove that r is
total, i.e., r ∈ Gρ→σ. Let x ∈ Gρ. We have to show |r|(x) ∈ Gσ. Since x is
total, we have that all zij(x)’s are total. But zij(x) ∈ GB is finite, so there

exists Uij ⊆ x such that zij(x) = zij(U ij). Let U be the union of all Uij
(i, j ∈ I with ai 6̂ aj). Then U ⊆ x and U ∈ Conσ. By the monotonicity of

the zij ’s, we conclude that all zij(U)’s are total. Hence r(U, b) for all b ∈ yU .
We get yU ⊆ |r|(x), so by Lemma 6.2 |r|(x) ∈ Gσ since yU ∈ Gσ. This
completes the proof. �

Corollary 6.9 (Density Theorem). The total ideals Gρ are dense in
|Cρ|.

Corollary 6.10. Each type ρ is separable, i.e.,

∀U, V ∈ Conρ
(
U 6̂ V → ∃z ∈ Gρ→B z(U) 6̂ z(V)

)
.

Corollary 6.11. For all x, y ∈ Gρ:

x ∼ρ y ↔ x ∪ y consistent.

Proof. ⇒: Ind(x ∼ y). We only treat the case

∀z ∈ Gρ f(z) ∼σ g(z)

f ∼ρ→σ g
.

Let (U, a) ∈ f and (V, b) ∈ g with U ^V . We have to show a^b. By the
density theorem, there is a total ideal z ∈ Gρ with U ∪ V ⊆ z. By the IH,
f(z) ∪ g(z) is consistent, and therefore a^b because a, b ∈ f(z) ∪ g(z).

⇐: Let x ∪ y be consistent, then z := (x ∪ y) is an ideal. But z extends
x ∈ G, so z is total as well. Moreover, x ∩ z = x ∈ G and y ∩ z = y ∈ G
and therefore by Lemma 6.4, x ∼ z ∼ y.2 �

Remark 6.12. The expert is invited to inspect that the proof of Lemma
6.8 also gives rise to effective versions of density and separability in the
following sense. Given an effective coding p·q of tokens and neighborhoods
as natural numbers we call an ideal computable if the (codes of) its tokens
are Σ0

1-definable. The Effective Density Theorem states that for each type
ρ there is a total and computable ideal xρ such that U ⊆ xρ(pUq) for
all U ∈ Conρ. Analogously, effective separability states the existence of an

total and computable ideal zρ such that zρ(pUq, pV q, U) 6̂ Bzρ(pUq, pV q, V)
whenever U 6̂ ρV . Moreover, the map which assigns a code pρq of a type ρ to
an enumeration of (the codes of) the ideal xρ (respectively zρ) is computable.

Remark 6.13. Using the characterization from Corollary 6.11 we can
give an alternative proof of theorem 6.5. Given total x and y with x ∼ y,
we obtain that x ∪ y is a total ideal by the corollary. Thus for all total f ,
f(x ∪ y) is total and hence f(x)∪ f(y) ⊆ f(x ∪ y) is consistent. Again with
the corollary we conclude f(x) ∼ f(y).

2An alternative proof of “⇐” by induction on x, y ∈ Gρ does not need Lemma 6.4.

7. KLEENE-KREISEL CONTINUOUS FUNCTIONALS 40

7. Kleene-Kreisel Continuous Functionals

The continuous functionals were independently introduced by Kleene
[23] and Kreisel [26]. There are several ways to describe the Kleene-Kreisel
continuous functionals (see, for example, [31, p. 253 f.] for an overview
and further references). Here we follow the approach of Ershov [12] and
introduce the continuous functionals as ∼-equivalence classes of total ideals.

Definition 7.1. The Kleene-Kreisel continuous functionals of type ρ
are defined as the equivalence classes of ∼ρ, i.e., Gρ := Gρ/ ∼ρ. We denote
the equivalence class of f ∈ Gρ w.r.t. ∼ρ by [f]ρ or sometimes just by [f].

For [f] ∈ Gρ→σ we can associate a function G([f]) : Gρ → Gσ given
by G([f])([x]) := [|f |(x)]. This is well-defined since whenever x ∼ρ y and
f ∼ρ→σ g, then |f |(x) ∼σ |g|(x) and by Theorem 6.5 |g|(x) ∼σ |g|(y).
Therefore |f |(x) ∼σ |g|(y).

Note that, by Corollary 6.11, each equivalence class [x] possesses a

unique maximal representative, namely
⋃

[x] (which is equal to
⋃

[x] because
[x] is directed by the corollary). We call this the canonical representative
of [x].

Next, we introduce (classical) models over the continuous functionals.
These will be models where our recursion schemes studied in Chapter 3 are
valid. To prove this, we need a way to reason about non-total functionals
as well. This is done via set variables.

There are two ways how to handle equality. On the one hand, it can
be interpreted as equality between ideals resulting in the model G. On the
other hand, equality can be interpreted as the relation ∼ resulting in the
extensional model G.

We first need to know that the denotation of a TB-term is total.

Lemma 7.2. Let M be a term of TB and let θ be an environment of ideals
(cf. Definition 4.1) such that θ(x) is total for all x ∈ FV(M). Then [[M]]θ is
total.

Proof sketch. First one proves that all recursion operators Rµ have a
total denotation. This is done by showing that [[Rµ]](x) is total by induction
on x ∈ Gµ.

Then the claim follows easily by induction on the buildup of the term
M using the results from Section 4. �

We now define the validity of a HAω[X]-formula in G and G. This is
done as usual and we handle the predicate variables in X as set variables
via an assignment.

Definition 7.3. An environment of total ideals θ is an environment of
ideals θ such that θ(x) is total for all x ∈ supp(θ). An X -assignment is map
Ξ with domain X such that

Ξ(X) ⊆ Gρ1 × · · · ×Gρn

for each X ∈ X with ar(X) = (ρ1, . . . , ρn). Moreover, Ξ is ∼-compatible if
in addition

~x ∈ Ξ(X) ∧ ~x ∼ ~y → ~y ∈ Ξ(X)

7. KLEENE-KREISEL CONTINUOUS FUNCTIONALS 41

for all X ∈ X .
Now given an environment of total ideals θ and an X -assignment Ξ we

define G,Ξ |= A[θ] for all HAω[X]-formulas A with FV(A) ⊆ supp(θ):3

G,Ξ |= M =ρ N [θ] :↔ [[M]]θ = [[N]]θ

G,Ξ |= X(~M)[θ] :↔ [[~M]]θ ∈ Ξ(X)

G,Ξ |= ⊥ :↔ ⊥
G,Ξ |= (A ◦B)[θ] :↔ (G,Ξ |= A[θ]) ◦ (G,Ξ |= B[θ])

G,Ξ |= (QxρA)[θ] :↔ Qz ∈ Gρ G,Ξ |= A[θ[x 7→ z]]

for ◦ = ∨,∧,→ and Q = ∀, ∃. G,Ξ |= A[θ] is defined analogously to G,Ξ |=
A[θ] but the equality relation is interpreted as ∼, i.e.,

G,Ξ |= M =ρ N [θ] :↔ [[M]]θ ∼ρ [[N]]θ.

We write G |= A[θ] (G |= A[θ]) if G,Ξ |= A[θ] (G,Ξ |= A[θ]) holds for
all (∼-compatible) Ξ. Moreover, we omit θ if A is closed.

Remark 7.4. (1) The model G validates extensionality, whereas
the model G doesn’t: there are total functions which agree on
all total arguments but are different on non-total arguments (e.g.,

{(∅, 0)} and {({Sn0}, 0) | n ∈ N}).
(2) Let Ξ be a ∼-compatible X -assignment and A (B) be a HA[X]-

formula such that for each type ρ, whenever =ρ occurs positively
(negatively) in A (B), then ρ is a finitary base type. Then the
following transfer principles hold:

G,Ξ |= A[θ] implies G,Ξ |= A[θ], and

G,Ξ |= B[θ] implies G,Ξ |= B[θ].

To see this, observe that ∼ is reflexive and for a finitary base type
µ, we have x ∼µ y iff x = y, for all total x and y. The rest follows
by induction on formulas.

Theorem 7.5. G |= E−PAω[X] and G |= PAω[X].

Proof sketch. The induction axioms are validated using induction on
the definition of the Gρ’s. To verify the compatibility axioms in the case of
G one needs the compatibility property of the X -assignments. The rest of
the proof is straightforward. �

7.1. Classical Analysis. We will now show that the Kleene-Kreisel
continuous functionals verify the axiom of countable and dependent choice
and thus are a model of classical analysis.

Axioms of Choice. The axiom of dependent choice is the following axiom
scheme

DCρ ∀nN∀xρ∃yρA(n, x, y)→ ∃fN→ρ∀nNA(n, f(n), f(n+ 1)),

3Of course, the connectives on the right hand side are from the metalanguage, whereas
on the left hand side they are from the object language.

7. KLEENE-KREISEL CONTINUOUS FUNCTIONALS 42

where A ranges over HA[X]-predicates with f /∈ FV(A). With DC we denote
the union of all DCρ. The axiom of (countable) choice is given by the scheme

ACρ ∀nN∃xρA(n, x)→ ∃fN→ρ∀nNA(n, f(n)).

Again, A(n, x) ranges over HAω[X]-predicates with f /∈ FV(A), and AC
stands for the union of all ACρ. Notice that this is a special case of the
general axiom of choice given by

GACρ,σ ∀xρ∃yσA(x, y)→ ∃fρ→σ∀xρA(x, f(x)).

Since we are mainly interested in the axiom of countable choice AC instead
of the more general GAC we always mean the former when referring to “the
axiom of choice”.

We have suppressed the reference to X in the notation of DC, AC, and
GAC. No confusion should arise since we need the predicate variables X
only for the totality proofs in the next chapter — otherwise we explicitly
set X to be empty.

It is easy to see that we can identify GN as well as GN with N.

Lemma 7.6. The elements of GN→ρ correspond to Gρ-sequences in the
following way:

{G(α) | α ∈ GN→ρ} = (Gρ)
N.

Proof. We have already seen that given α ∈ GN→ρ, G(α) is a map from
GN = N to Gρ. Conversely, let f : N → Gρ. We have to show f = G(α)
for some α ∈ GN→ρ. Define g : N→ Gρ by setting g(n) to be the canonical
representative of f(n), so in particular f(n) = [g(n)] for all n ∈ N. We now
define h : |CN| → |Cρ| by

h(x) =

{
g(x) if x ∈ GN,

∅ otherwise.

It is not hard to see that h is continuous. Therefore ĥ ∈ |Cρ
CN | and since

h agrees with g on total arguments we have ĥ ∈ GN→ρ. So we get with

α := [ĥ] ∈ GN→ρ for n ∈ N:

G(α)(n) = [|ĥ|(n)] = [h(n)] = [g(n)] = f(n). �

Theorem 7.7. G |= DC and G |= DC.

Proof. The proof is similar for both. For example, assume

G,Ξ |= ∀n∀xρ∃yρA(n, x, y)[θ], i.e.,

∀k ∈ N∀x′ ∈ Gρ∃y′ ∈ Gρ. G,Ξ |= A(n, x, y)[θ[n, x, y 7→ k, x′, y′]]

By dependent choice in the metatheory, there exists a function g : N→ Gρ

such that

(7) ∀k ∈ N. G,Ξ |= A(n, x, y)[θ[n, x, y 7→ k, g(k), g(k + 1)]]

As in the lemma above, we can extend g to a continuous h : |CN| → |Cρ|
with ĥ ∈ GN→ρ. From (7), we obtain

∀k ∈ N. G,Ξ |= A(n, f(n), f(n+ 1))[θ[n, f 7→ k, ĥ]], i.e.,

G,Ξ |= ∃f∀nA(n, f(n), f(n+ 1))[θ] �

7. KLEENE-KREISEL CONTINUOUS FUNCTIONALS 43

It is not hard to see that AC is provable from DC and thus is also valid
in our models.

7.2. Continuity. We now assume that our types are closed under list
types (i.e., if ρ ∈ B then so is ρ∗ ∈ B) and contain N. Using the recursion
operator for lists, we can define the initial segment ᾱn of α : N → ρ such
that the following is provable in HAω:

ᾱ0 = 〈〉 ᾱ(n+ 1) = ᾱn ∗ α(n).

The continuity axiom is given by4

Contρ ∀Y (N→ρ)→N∀α∃n∀β(ᾱn =ρ∗ β̄n→ Y α =N Y β).

We say that n is a point of continuity of Y at α expressing that

∀β(ᾱn = β̄n→ Y (α) = Y (β)).

Our next goal is to show that the continuity axiom Cont holds in the
model G. For this we first need some preparations. Let α ∈ |CN→ρ| be a
sequence and define α⊥ by

(8) (U, a) ∈ α⊥ :↔ (U, a) ∈ α ∧ ∃k ∈ NSk0 ∈ U.
Then α⊥ ⊆ α so α⊥ is consistent. It is also deductively closed: suppose
W ⊆ α⊥ with W ` (U, a). We show (U, a) ∈ α⊥. Because α is deductively
closed (U, a) ∈ α. By Lemma 2.7, we get W (U) 6= ∅ so there is (V, b) ∈ W
with U ` V . Because (V, b) ∈ α⊥ there exists k ∈ N with U ` Sk0 and
therefore Sk0 ∈ U . This proves (U, a) ∈ α⊥.

It is not hard to see that α⊥(n) = α(n) for all n ∈ N. In particular, if α
is total, then so is α⊥ and α⊥ ∼ α.

Theorem 7.8. G |= Cont.

Proof. Let Y and α be total. By the above considerations, w.l.o.g. we
can assume α = α⊥. Because Y and α are total, so is Y (α), say Y (α) =
m ∈ N. Hence there exists U ⊆ α such that (U, Sm0) ∈ Y . Define

n := sup{i | ∃(W, c) ∈ U. Si0 ∈W}+ 1 ∈ N.
It remains to prove

∀β ∈ GN→ρ
(
ᾱn ∼ β̄n→ Y (β) = m

)
where we have written ᾱn instead of [[λxy.x̄y]](α, n) and similarly for β̄n.
Let β ∈ GN→ρ with ᾱn ∼ β̄n. Because β⊥ ∼ β, w.l.o.g. we can assume
β = β⊥. Since Y and β are total, Y (β) = k ∈ N is total, so there exists
V ⊆ β with (V, Sk0) ∈ Y . We have to show k = m. For this, it suffices to
show Sm0^Sk0. Because Y is consistent, this amounts to proving U^V .
Let (W1, a1) ∈ U and (W2, a2) ∈ V with W1 ^W2 be given. We show:
a1 ^ a2. Since W1 ^W2, α = α⊥, and β = β⊥, there exists l ∈ N with
Sl0 ∈ W1 ∩W2. Because (W1, a1) ∈ U , we conclude l < n and therefore
αl ∼ βl by assumption. Corollary 6.11 implies that αl ∪ βl is consistent.
Clearly, a1, a2 ∈ αl ∪ βl and thus a1^a2. �

4This in fact reflects topological continuity. The space of XN of sequences of a set
X carries a natural topology: The basic open sets are given by the sets of all sequences
sharing some initial segment. The continuity principle above reflects topological continuity
when N is equipped with the discrete topology.

8. NOTES 44

Together with Remark 7.4 we obtain:

Corollary 7.9. G |= Cont.

8. Notes

The material of Sections 1–5 is based on [36] and earlier versions of [37].
Apart from some corrections, the main difference in our treatment is the
use of coherent information systems instead of atomic coherent information
systems (acis’s). We now elaborate on why we have done so.

A c.i.s. is atomic, if for each formal neighborhood U and token a, U ` a
iff there is a b ∈ U with {b} ` a. Note that our c.i.s.’s Cρ are in general not
atomic. E.g., consider an algebra with a binary constructor B and a nullary
constructor 0, then {B0∗, B∗0} ` B00. But neither {B0∗} nor {B∗0} alone
entail B00.

For each type ρ one can define an acis C′ρ. Loosely speaking, this can be
done as in Definition 2.2 with the following modifications. For entailment
one restricts the rule for base types to n = 1, for arrow types one uses
{(U, a)} `′ (V, b) defined as V `′ U and {a} `′ b instead, and adds the rule
U `′ a whenever there is a b ∈ U with {b} `′ a. The tokens are defined
as for the non-atomic case, but constructors take formal neighborhoods at
non-finitary argument positions instead of extended tokens. We refer the
reader to [36] for the detailed definition. As for |Cρ|, one can define the
total ideals of |C′ρ|, say G′ρ. It turns out that the corresponding primed
version of Lemma 6.2 does not hold.

As a counterexample consider an algebra µ with a constructor C of
type (N → N) → (N → N) → µ. Let x be the deductive closure of
{({Sn0}, 0) | n ∈ N} w.r.t. C′ρ, and let U := {(∅, 0)}. Then x is in G′.

Now define f := |rC |(x, x) ∈ G′ and g := f ∪ {CU∅} ∪ {C∅U} where the
deductive closure is w.r.t. C′ρ. Because of the atomicity, g is deductively
closed. It is not hard to see that g is in fact an ideal and that CUU /∈ g.
Hence g is not of the form |rC |(x1, x2) for some ideals x1, x2. In particular,
g is not in G′. Therefore, we have found an ideal g, which extends a total
ideal f , but is not total itself.

This also means that Lemma 2.6 (3) does not hold in the acis setting:
There are non-empty ideals z ∈ |C′µ| which are not of the form z = |rC |(~x)
for some ideals ~x and a constructor C. Take, for instance, the ideal g from
above, or the ideal {B0∗, B∗0} ∈ |C′| with B and 0 as above.

However, if one considers base types with only nullary and unary con-
structors, these problems vanish and in this case the approach with acis’s is
more perspicuous.

CHAPTER 3

Recursion

In this chapter we study recursion schemes which can be used to give a
computational interpretation of various choice principles. We will show that
most of the schemes are valid in the Kleene-Kreisel continuous functionals
and thus consistent. This will be done in two steps. First, we show that
the schemes exist as partial continuous functionals. Then, we show that
these partial continuous functionals are total. For the totality proofs we
need axiom schemes which naturally correspond to the recursion schemes.
Another question we tackle in this chapter is the interdefinability of the
studied functionals. Moreover, we show that the fan functional is definable
by two of our schemes.

Notational Conventions. From now on we restrict our attention to a
fixed system of types given by the grammar

ρ, σ ::= N | ρ∗ | ρ× σ | ρ→ σ.

We set ρω := N → ρ for the type of sequences of objects of type ρ. The
level lev(ρ) of a type ρ is inductively defined by

lev(N) := 0, lev(ρ× σ) := max{lev(ρ), lev(σ)},
lev(ρ∗) := lev(ρ), lev(ρ→ σ) := max{lev(ρ) + 1, lev(σ)}.

By term we always mean a term of HAω with the above system of types.
Unless stated otherwise, we use the following type conventions for variables

i, j, k, l,m, n : N, s, t : ρ∗, and α, β : ρω,

where ρ is an arbitrary type.
To enhance readability, we often insert parentheses when writing appli-

cations, e.g., we write M(x, y, z) for Mxyz.
A predicate P (~x~ρ) is called (higher type) primitive recursive if there is a

closed term χP : ~ρ→ N such that HAω ` P (~x)↔ χP (~x) =N 0.
In general, we won’t be very formal when defining new terms or pred-

icates of HAω. However, all definitions are such that they can be eas-
ily translated into definitions using the structural recursion operators pro-
vided by our theory. We presuppose all standard definitions and notations
for operations on natural numbers (e.g., addition + and cut-off subtrac-
tion −·) and of primitive recursive predicates between them; for n ∈ N we
sometimes just write n instead of the numeral Sn0. Case distinction is
written as if n then xρ else yρ and satisfies if 0 then x else y =ρ x and
if (Sn) then x else y =ρ y; if P is a primitive recursive predicate we write
if P (~x) thenx else y for if χP (~x) thenx else y. Often such case distinctions
will be displayed using brackets (see below). Recall, that pairing is denoted
by 〈·, ·〉, left projection by π0, and right projection by π1; adding an element

45

1. BAR RECURSION AND VARIANTS 46

xρ to a list sρ
∗

is denoted by s ∗x and 〈〉 is the empty list. We use the nota-
tion 〈xρ0, . . . , x

ρ
n−1〉 to denote the list of type ρ∗ with elements x0, . . . , xn−1.

The length of the list s is denoted by |s|, so if s = 〈x0, . . . , xn−1〉, then
|s| = n.

The canonical embedding embρ : N→ ρ of N into ρ is defined by induc-
tion on the type

embN(n) := n, embρ×σ(n) := 〈embρ(n), embσ(n)〉,
embρ∗(n) := 〈embρ(n)〉, embρ→σ(n) := λxρ. embσ(n).

Its inverse operation ψρ : ρ→ N is defined by induction on the type:1

ψN(n) := n ψρ→σ(f) := ψσ(f(embρ 0)) ψρ×σ(x) := ψρ(π0(x))

ψρ∗(s) := if s = 〈〉 then 2N else ψρ(s0)

Here s0 is the first element of s. By induction on ρ one immediately verifies
that (provably in HAω)

ψρ(embρ n) = n.

For n : N we also write nρ for embρ(n) and sometimes just n if ρ is clear
from the context and n is a numeral.

For a list s, sn denotes the (n+1)-th element of s if n < |s|, and otherwise
sn = 0ρ. In particular, 〈x0, . . . , xn−1〉m = xm for m < n, and for each list s,
s = 〈s0, . . . , s|s|−1〉.

We need the following notations concerning lists and sequences:

ᾱn = 〈α(0), . . . , α(n− 1)〉,
(s@ α)(n) = if n < |s| then sn else α(n),

(s ∗ α)(n) = if n < |s| then sn else α(n−· |s|),
s ∗ t = concatenation of s and t,

α ∈ s :↔ ᾱ|s| = s,

s ∈ t :↔ |s| ≤ |t| ∧ ∀i < |s|(si = ti),

ŝ = s@ 0ρ
ω
,

(α, n) = ᾱn@ 0ρ
ω
.

Note that the overloading of the operator “∗” does not pose a problem
because the type of the operands always determine which “∗” is meant.

Often we write if n then xρ instead of the longer if n then xρ else 0ρ.

1. Bar Recursion and Variants

In his last article [42], Spector extended Gödel’s Dialectica interpreta-
tion of arithmetic to classical analysis. This was achieved by adjoining a
new scheme to Gödel’s T , called bar recursion.2 His main achievement is

1The magic number 2 appearing in the definition is inessential and only used for a
technical argument in the proof of Lemma 5.4.

2This, however, was already suggested by Gödel in [18, p. 286] where he writes: “Es
ist klar, dass man, von demselben Grundgedanken ausgehend, auch viel stärkere Systeme
als T konstruieren kann, zum Beispiel durch Zulassung transfiniter Typen oder der von
Brouwer für den Beweis des ‘Fan-Theorems’ benutzten Schlussweise.” (It is clear that,
starting from the same basic idea, one can construct much stronger systems than T , for

1. BAR RECURSION AND VARIANTS 47

the proof-theoretic reduction via the Dialectica interpretation of classical
analysis to a quantifier-free system build from T extended with constants
for bar recursion. For more details we refer the reader to Spector’s article.

Later we will see that bar recursion may be regarded as recursion over
well-founded trees given by higher type functionals.

Bar recursionis given by the following equation:

SBRρ,τ (Φ) ΦY GHs =τ

{
G(s) if Y (ŝ) < |s|,
H(s, λxρ.ΦY GH(s ∗ x)) otherwise.

Here Y has type ρω → N, G has type ρ∗ → τ , and H has type ρ∗ → (ρ →
τ)→ τ . Formally SBRρ,τ (Φ) stands for the universally quantified predicate
(with distinguished variable Φ)

∀Y,G,H, s.ΦY GHs =τ

{
G(s) if Y (ŝ) < |s|,
H(s, λxρ.ΦY GH(s ∗ x)) otherwise.

We write SBRρ,τ for ∃Φ SBRρ,τ (Φ) and SBR for the union of all SBRρ,τ ,
ρ, τ ∈ Ty. The same conventions apply in future definitions.

Our definition follows the one given by Howard in [21], where the only
difference to Spector’s definition in [42] is that instead of using a type for
finite lists, Spector used a sequence C : N → ρ and a natural number x to
encode the list 〈C0, . . . , C(x − 1)〉. It was shown by Bezem in [9, p. 155]
that both variants are equivalent.

We now give an informal explanation of how one can view bar recursion
as recursion over well-founded trees. In order to give this intuition, we first
need some notions.

A set B of finite sequences (of a fixed set M) bars a node s, if

∀α ∈ s∃n ᾱn ∈ B.

If B bars 〈〉, then we simply call B a bar . A set T of finite sequences is
called a tree if T is closed under initial segments. For a node s ∈ T define
its immediate successors in T by succT (s) := {s ∗ x | s ∗ x ∈ T ∧ x ∈M}. A
node s ∈ T is a leaf if it possesses no immediate successor in T . A tree T is
well-founded if it has no infinite path, i.e.,

∀α∃n ᾱn /∈ T.

Now assume that B is a bar and that B is decidable, i.e.,

∀s(s ∈ B ∨ s /∈ B).

We define

TB := {s | ∀t ∈ s t /∈ B}.

Then TB is a well-founded tree and we can specify a function F : TB∪B → X
by bar recursion on TB by specifying F on B by G and on TB by H such

example by admitting transfinite types or the rule of inference which Brouwer uses to
prove the “Fan theorem”. [19])

1. BAR RECURSION AND VARIANTS 48

that3

F (s) =

{
G(s) if s ∈ B,
H(s, F � succT (s)) otherwise.

In particular, F is defined on 〈〉. Now Spector’s bar recursion in the point
〈〉 (given functionals Y,G and H) is given by bar recursion on the tree TBY
where

BY := {s | Y (ŝ) < |s|}.
Of course, Y must be such that BY is indeed a bar. Moreover, bar recursion
is uniform in the arguments, in particular in BY . This indicates that find-
ing models for bar recursion is non-trivial. In fact, the full set-theoretical
structure4 is not a model of bar recursion.5

Our next goal is to prove that SBR is indeed valid in the model of Kleene-
Kreisel functionals G. For this we first need the principle of bar induction
for decidable bars BID given by:

∀s(P (s) ∨ ¬P (s)) ∧
∀α∃nP (ᾱn) ∧
∀s(P (s)→ Q(s)) ∧
∀s(∀xρQ(s ∗ x)→ Q(s)) →
Q(〈〉).

Here P and Q range over HAω[X]-predicates of arity (ρ∗).
Note that BID follows from DC with classical logic: assuming ¬Q(〈〉) we

can construct with DC an infinite sequence α using ¬Q(s) → ∃x¬Q(s ∗ x)
such that ¬Q(ᾱn) for all n. Therefore ¬P (ᾱn) for all n, i.e., P is not a bar.6

It is convenient to consider the following modification BI′D of BID: BI′D is
like BID, but instead of the premise ∀α∃nP (ᾱn) we take ∀α∀k∃n ≥ k P (ᾱn)
(we say that P is an infinite bar), and instead of the conclusion Q(〈〉) we
take ∀sQ(s).

Lemma 1.1. HAω[X] + BID ` BI′D.

Proof. Let predicates P (s) and Q(s) as above be given and assume the
premises of BI′D. For a fixed s we must prove Q(s). Define

Qs(t) :↔ Q(s ∗ t), and Ps(t) :↔ P (s ∗ t).
3In a set-theoretical framework the existence of F is guaranteed by the recursion

theorem for well-founded relations because the (proper) initial segment relation is well-
founded since TB is so.

4In the set-theoretical model S one has SN = N and Sρ→σ is defined to be all functions
from Sρ to Sσ; product and list types are interpreted as products and finite sequences
respectively.

5Consider, e.g., the functional Y : (N→ N)→ N defined by Y (α) = n if α has n roots,
and = 0 if α has infinitely many roots. Then with H(s, F) := 1 + F (1) and G arbitrary,
one easily sees that, if there would be a function Ψ satisfying the equation for bar recursion
in the set-theoretical model, then ΨY GH〈〉 = ΨY GH(1n) + n ≥ n for each n, which is
impossible.

6This argument even shows that the stronger principle of classical bar induction BI,
given by (B arbitrary)

∀α∃nB(ᾱn) ∧ ∀s(∀xB(s ∗ x)→ B(s))→ B(〈〉),
is derivable using classical logic and dependent choice.

1. BAR RECURSION AND VARIANTS 49

We have to show Qs(〈〉). This is proved by BID for the predicates Qs and
Ps. It remains to verify the premises of BID. We only show that Ps is a bar,
i.e., ∀α∃nPs(ᾱn). The rest follows easily from the respective assumptions
on P and Q. Let α be given. Since P is an infinite bar we have

∀β∀k∃n ≥ k P (β̄n),

in particular, for s∗α and |s| there exists n ≥ |s| such that P ((s ∗ α)n), and
hence Ps(ᾱ(n− |s|)). �

Remark 1.2. Another variant of bar induction for decidable bars BID
considered in the literature is bar induction for monotone bars BIM , where
the decidability of P is replaced with the monotonicity condition P (s) →
P (s ∗x) for all s and xρ. (Cf. [22] for a comparison and further discussion.)

The principle BI′D is similar to Kohlenbach’s (BI)ρ∗ [24, p. 7], where the
only difference is that he uses the premise ∀α∃k∀n ≥ kP (ᾱn) instead of our
∀α∀k∃n ≥ kP (ᾱn). For our treatment, it is not essential which of the two
variants one chooses.

Notation. To not complicate our notation too much, we often identify
terms with their denotation, e.g., for the term λxρ

∗
.x̂ : ρ∗ → ρω and an ideal

s of type ρ∗, we write ŝ for the ideal [[λxρ
∗
.x̂]](s).

Theorem 1.3. Spector’s bar recursion exists in the model G, more pre-
cisely G |= SBR. Moreover, with the transfer principle G |= SBR.

Proof. Let D be a defined constant with computation rule (additional
to the computation rules of system T):

(9) DYGHs . if Y (ŝ) < |s| thenG(s) elseH(s, λxρ.DY GH(s ∗ x)).

By the results of Section 4 in Chapter 2, it suffices to show that Φ :=
[[D]] ∈ |C| is total.7 So fix total Y , G, and H. We have to show that
Ψ(s) := ΦY GHs is total for all total s.

Let Q be a predicate variable of arity (ρ∗) and define the {Q}-assignment
Ξ by

Ξ(Q) = {s ∈ Gρ∗ | Ψ(s) is total}.
Then, as DC implies BI′D classically, we have G,Ξ |= BI′D. We now prove
G,Ξ |= ∀sQ(s) by BI′D with

P (s) :↔ Y (ŝ) < |s|.

That P is decidable in G is trivial. We now verify the remaining premises
of BI′D (where we argue in G,Ξ).

(i) ∀α∀k∃n ≥ k Y (α, n) < n. Let total α and k be given. By continuity
of Y there exists m such that Y (β) = Y (α) for all β ∈ ᾱm. Let
n := max{k,m, Y (α)}+ 1. Then (α, n) ∈ ᾱm and therefore Y (α, n) =
Y (α) < n.

(ii) ∀s(P (s) → Q(s)). If P (s) for a total s, then Ψ(s) = G(s) is total
because G and s are.

7Alternatively, one could also use fixed-point operators to define Φ.

1. BAR RECURSION AND VARIANTS 50

(iii) ∀s(∀xQ(s∗x)→ Q(s)). Let s be total with Q(s∗x) for all total x. We
have to show that Ψ(s) is total. We may assume ¬P (s), i.e., Y (ŝ) ≥ |s|.
By assumption, we obtain that Ψ(s∗x) is total for all total x, and hence

[[λy, g, h, tλxρ.Dygh(t ∗ x)]](Y,G,H, s) is total.

Therefore Ψ(s) = H
(
s, [[λy, g, h, tλxρ.Dygh(t∗x)]](Y,G,H, s)

)
is total,

since H and s are total. �

Remark 1.4 (Strong normalization; adequacy). Let −→ denote the
reduction relation −→βP , where P is the system of computation rules of
Gödel’s T together with defined constants D and the computation rules as
in (9) of the proof of the last theorem. Then the reduction relation −→ is
not strongly normalizing because, for D′ := DYGH with D a bar recursor,
we have

D′s −→ if Y (ŝ) < |s| thenG(s) elseH(s, λxρ.D′(s ∗ x)).

Reducing the innermost D′ again and again, leads to an infinite reduction
sequence.

However, this defect can be repaired if one forces the test Y (ŝ) < |s| to
take place before reducing the bar recursor: Let B be a defined constant
with the following computation rules

BY GHs 0 . G(s) : τ,

BY GHs (Sn) . H(s, λxρ.BY GH(s ∗ x)(Y (ŝ ∗ x)−· |s|)).

Then the denotational semantics of

λY GHs.BY GHs((Y (ŝ) + 1)−· |s|)

is total as well, satisfies the equation of SBR, and the resulting reduction
relation is strongly normalizing. This was first proved in a combinatorial
formulation by Vogel in [49] (where the above trick was also introduced)
extending the weak normalization proof of Tait [44]; a proof for the formu-
lation in λ-calculus can be found in [5].

Although −→ is not strongly normalizing, it can be used to effectively
compute the normal form of a closed term of type N. This is guaranteed by
the Adequacy Theorem (cf. Section 5 in Chapter 2) which even gives us a
deterministic reduction strategy (by our operational semantics). Note that
this can as well be done for all recursion schemes below for which we prove
totality – in particular, our realizers in the next chapter.

In his Ph.D. thesis [24], Kohlenbach introduced another variant of Spec-
tor’s bar recursion. In his version, the stopping condition Y (ŝ) < |s| is re-
placed with Y (s @ 0) = Y (s @ 1). It turns out, that this variant is strictly
stronger than Spector’s original formulation (cf. [24, p. 57 ff.]). Altogether,
the equation for Kohlenbach’s variant of bar recursion is

KBRρ,τ (Φ) ΦY GHs =τ

{
G(s) if Y (s@ 0) =N Y (s@ 1),

H(s, λxρ.ΦY GH(s ∗ x)) otherwise.

Theorem 1.5. G |= KBR and G |= KBR.

2. MODIFIED BAR RECURSION 51

Proof. Analogously to the proof of Theorem 1.3 but with

P (s) :↔ Y (s@ 0) = Y (s@ 1).

That P is an infinite bar follows immediately from the continuity of Y . �

2. Modified Bar Recursion

2.1. The Berardi-Bezem-Coquand Functional. The Berardi-Be-
zem-Coquand (BBC) functional was introduced in [2] in order to give a
(new) computational interpretation of the classical axiom of choice. For this
they gave a realizer of the negative translated axiom of choice w.r.t. a non-
standard version of modified realizability and A-translation. Their setting
also employs fixed-point operators (in order to define their functional) and
infinite terms. The latter were only needed in the correctness proof of their
realizer.

In order to define the BBC functional, we first need an auxiliary func-
tional. For s : (N×ρ)∗ (which we can view as an approximation of an infinite
sequence) and α : ρω we define s{α} : ρω by

(〈〉{α})n := αn,

((s ∗ 〈m,x〉){α})n :=

{
x if n = m,

(s{α})n otherwise.

Now the BBC functional is given by the equation

BBCρ(Ψ) ΨY Hs =N Y
(
s{λn.H(s, n, λxρ.ΨY H(s ∗ 〈n, x〉))}

)
,

where s : (N× ρ)∗ and all other types can be inferred from the context.
We also consider another variant of the BBC functional, which we call

weak BBC functional , given by

wBBCρ(Ψ) ΨY Hs =N Y
(
s{λn.H(n, λxρ.ΨY H(s ∗ 〈n, x〉))}

)
.

The weak BBC functional suffices for the realizer given in [2], but it is an
open problem whether it is equivalent to BBC.

2.2. Modified Bar Recursion. Inspired by the BBC functional, Ber-
ger and Oliva introduced a variation of bar recursion in [6] which they
named modified bar recursion. The main difference to the approach of Be-
rardi, Bezem, and Coquand is that their functional provides a realizer of the
negative translated axiom of dependent choice w.r.t. standard definitions
of modified realizability and A-translation, and allows an easier correctness
proof. In Chapter 4 this will be done in detail.

Modified bar recursion is given by the equation

MBRρ(Ψ) ΨY Hs =N Y
(
s@H(s, λxρ.ΨY H(s ∗ x))

)
.

Here Y has type ρω → N and H has type ρ∗ → (ρ→ N)→ ρω.
Another variant of this is weak modified bar recursion given by

wMBRρ(Ψ) ΨY Hs =N Y
(
s@ λn.H(s, λxρ.ΨY H(s ∗ x))

)
.

Note that here H has type ρ∗ → (ρ→ N)→ ρ.

2. MODIFIED BAR RECURSION 52

Remark 2.1. It is essential that the equation for MBR and wMBR is at
a type of level zero. Suppose there is a functional Ψ satisfying the equation
for wMBR at, say, type N→ N, i.e.,

ΨY Hs =N→N Y
(
s@ λn.H(s, λxρ.ΨY H(s ∗ x))

)
.

Then for Y (α,m) := α(m) + 1 and H(s, F) := F (0, |s|+ 1) we obtain

ΨY Hsm =N

(
s@ λn.ΨY H(s ∗ 0, |s|+ 1))

)
(m) + 1,

and thus, by induction on m,

ΨY H〈〉0 = ΨY H 〈0, . . . , 0〉︸ ︷︷ ︸
m

(m) +m

which is inconsistent with HAω.

Our next aim is the totality of the modified bar recursor. This was shown
in [6] although the argument there was only sketched. Here we give a proof
adapted to our setting. For this we need some preparatory observations
concerning continuity properties of the partial continuous functionals. Recall
the definition of s@ α as a term of T :

s@ α = λn.if n < |s| then sn else α(n).

When dealing with total objects only, it is not essential how < and if-terms
are implemented as HAω-terms. When dealing with partial objects, however,
different implementations result in different behavior on non-total objects.
We assume the following properties of the denotation of < and if-terms
(which we also write as < and if · then · else ·):

Sx < Sy iff x < y, 0 < Sy,¬Sx < 0, ∅ < x is undefined

(i.e., the characteristic function is ∅), and if ∅ then z1 else z2 = ∅,

for x, y ∈ |CN| and z1, z2 ∈ |Cρ|.
Let ⊥ := ∅, α ∈ Gρω , n ∈ N, and x ∈ |CN| with x not total, i.e., x /∈ GN.

We now claim that (ᾱn@⊥)(x) = ⊥. In case x is of the form Smy for some
y ∈ |CN| and m > n, then, using the assumptions on the implementation
from above, we get ¬(Smy < n), and hence (ᾱn @ ⊥)(x) = ⊥(x) = ⊥.
Otherwise, we can write x as Sm⊥ with m ≤ n. Then x < n iff ⊥ < n−m,
which is undefined. Hence, by the assumption on if-terms, we conclude
(ᾱn@⊥)(x) = ⊥. This proves the claim.

From the claim above we conclude for n,m ∈ N with n ≤ m that8

ᾱn@⊥ ⊆ ᾱm@⊥,

and hence the set

α̌ := {ᾱn@⊥ | n ∈ N} ⊆ |Cρω |,

is directed. Moreover, the claim also yields
⋃
α̌ = α⊥, where α⊥ is defined

as in Section 7.2 of Chapter 2.
As a consequence of our considerations, we obtain:

8Here we need extensionality for partial continuous functionals, i.e., f = g ∈ |Cρ→σ|
whenever f(x) = g(x) for all x ∈ |Cρ|. It is not hard to see that even equality on ideals

of the form U for U ∈ Conρ suffices.

2. MODIFIED BAR RECURSION 53

Lemma 2.2. Let F ∈ |Cρω→N|, α ∈ Gρω , and n ∈ N. Then:

F (α⊥) = n↔ ∃m ∈ N.F (ᾱm@⊥) = n.

Proof. Suppose F (ᾱm@⊥) = n for some m ∈ N. Because F is mono-
tone and ᾱm@⊥ ⊆ α⊥ we get n = F (ᾱm@⊥) ⊆ F (α⊥). Since n is maximal,
we conclude F (α⊥) = n.

Conversely, assume F (α⊥) = n. Because α̌ is directed,
⋃
α̌ = α⊥, and

F is continuous, we obtain:

n = F (α⊥) = F (
⋃
α̌) =

⋃
m∈N

F (ᾱm@⊥).

Hence Sn0 ∈ F (ᾱm @ ⊥) for some m ∈ N, i.e., n = F (ᾱm @ ⊥) for some
m ∈ N. �

Theorem 2.3. G |= MBR and G |= MBR.

Proof. Let D be a defined constant with computation rule (additional
to the computation rules of system T)

DYHs . Y
(
s@H(s, λxρ.DY H(s ∗ x))

)
,

where Y has type ρω → N.
Analogously to Theorem 1.3, it suffices to show that Ψ := [[D]] ∈ |C| is

total. Fix total Y and H. We have to show that Ψ′(s) := ΨY Hs ∈ N for
all total s.

Let P and Q be predicate variables of arity (ρ∗). We define the {P,Q}-
assignment Ξ by

Ξ(P) := {s ∈ Gρ∗ | Y (s@⊥) is total},
Ξ(Q) := {s ∈ Gρ∗ | Ψ′(s) is total}.

The claim follows from G,Ξ |= ∀sQ(s), which we prove using BI′D for P
and Q (in G). That P is decidable is trivial. We now verify the remaining
premises of BI′D (where we argue informally in G,Ξ).

(i) ∀α∀k∃n ≥ k Y (ᾱn@⊥) is total. Let α be total. Since Y is monotone
it suffices to prove Y (ᾱn@⊥) is total for some n. Because α is total,
so is α⊥ and α ∼ α⊥, and hence by the totality of Y , Y (α) = Y (α⊥)
is total. Thus the claim follows from Lemma 2.2.

(ii) ∀s(P (s) → Q(s)). Fix total s with P (s), i.e., Y (s @ ⊥) is total. By
the monotonicity of Y and the defining equation for D we conclude
Y (s@⊥) ⊆ Ψ′(s), and hence Ψ′(s) is total, i.e., Q(s).

(iii) ∀s(∀xQ(s ∗ x) → Q(s)). Let s be total such that Ψ′(s ∗ x) is total for
all total x’s. It follows that

[[λy, h, t, λxρ.Dyh(t ∗ x)]](Y,H, s) is total.

Therefore Ψ′(s) = Y
(
s @ H(s, [[λy, h, t, λxρ.Dyh(t ∗ x)]](Y,H, s))

)
is

total because Y, H, and s are total. �

3. OPEN RECURSION AND VARIANTS 54

3. Open Recursion and Variants

Open recursion was first introduced by Berger in [4] and is the com-
putational counterpart of (a fragment of) open induction. This principle
was introduced by Raoult [34] in a classical context and later analyzed in
a constructive setting by Coquand in [10] and others. The fragment of
the principle studied by Raoult can also be seen as a classical reformula-
tion of the minimal-bad-sequence argument of Nash-Williams [30] (cf. the
proof of 3.6). Roughly speaking, open induction is induction over sequences
ordered lexicographically but restricted to open predicates (w.r.t. to the
topology indicated in Footnote 4 of Chapter 2). This restriction is neces-
sary because, in general, the lexicographical ordering on sequences is not
well-founded. In this section, we also consider update recursion and in-
duction from [4] and introduce extensions thereof, which we call extended
update recursion and induction.

It is illustrative to talk about open and transfinite induction first. In
order to do so, we need some additional notions.

Definition 3.1. Let ≺ be a binary relation on ρ and let P be a HAω[X]-
predicate of arity (ρ).

(1) The ≺-progressiveness Prog≺(P) of P is defined as:

Prog≺(P) :↔ ∀x(∀y ≺ xP (y)→ P (x)).

(2) Let ≺ be primitive recursive. Transfinite induction for P is given
by

TI≺,P Prog≺(P)→ ∀xP (x).

By TI≺ we denote the scheme of transfinite induction (i.e., all
TI≺,P , P an arbitrary HAω[X]-predicate of arity (ρ)). We also
say that TI≺ expresses the well-foundedness of ≺.

(3) We define the lexicographical extension ≺lex of ≺ to ρω by

α ≺lex β :↔ ∃n.ᾱn = β̄n ∧ αn ≺ βn.

Definition 3.2. (1) A HAω[X]-formula B is called a Σ-formula if
all of the following hold:

(i) B is → ∀-free.
(ii) If P is a predicate symbol of arity (ρ1, . . . , ρn) occurring in B,

then lev(ρi) = 0 for all i = 1, . . . , n.
(iii) The type of any occurrence of a variable bound by an exis-

tential quantifier has level 0.
(2) For a predicate C of arity (ρ∗) and a quantifier Q ∈ {∀, ∃} we define

the predicate CQ(α) := QnC(ᾱn) of arity (ρω).
(3) Let U be a HAω[X]-predicate. U is called open (w.r.t. ρ) if U has

arity (ρω) and there are predicates B and C of arity (ρ∗) such that
B is a Σ-formula and

U(α) = C∀(α)→ B∃(α).

(4) Open induction is given by:

OI≺,U Prog≺lex
(U)→ ∀αU(α)

3. OPEN RECURSION AND VARIANTS 55

i.e.,

∀α (∀β ≺lex αU(β)→ U(α))→ ∀αU(α),

where U ranges over open HAω[X]-predicates, ρ over types, and ≺
ranges over primitive recursive binary relations of arity (ρ, ρ) with
HAω[X] ` TI≺.

Remark 3.3. (1) Unless ≺ is trivial, ≺lex is not well-founded. For
instance, if 0 ≺ 1, then

1000 · · · �lex 0100 · · · �lex 0010 · · · �lex . . .

is an infinite descending sequence in the Cantor space.
(2) Classically, any predicate of the form C∀(α)→ B∃(α) with C and

B arbitrary, is equivalent to C∀(α) ∧ ¬B∀(α)→ ⊥ which is open.
Moreover, with classical logic, for any open predicate U there

is a predicate D such that (provably in PAω[X]):

∀α.U(α)↔ ∃nD(ᾱn).

Hence, classically, open predicates are open w.r.t. the usual topol-
ogy on sequences (cf. Footnote 4 in Chapter 2).

Lemma 3.4. Open predicates are extensional, i.e., if U is an open pred-
icate, then:

HAω[X] ` ∀α, β (∀nαn =ρ βn→ U(α)→ U(β)) .

Proof. Let U be open, i.e., U(α) = C∀(α) → B∃(α) for C arbitrary
and B a Σ-formula. Let α, β : ρω and suppose

(10) ∀nαn =ρ βn,

U(α), and C∀(β). We have to show B∃(β), i.e., B(β̄n) for some n. Using
(10) one easily proves by induction on n, that

∀n ᾱn =ρ∗ β̄n

and hence C∀(β), i.e., ∀nC(β̄n) implies C∀(α) using compatibility for type
ρ∗. Together with U(α) we obtain B∃(α), i.e., B(ᾱn) for some n and hence
again with compatibility B(β̄n). �

It was observed by Troelstra in [47, p. 226–228] that transfinite induction
TI≺ (for ≺ primitive recursive) is realized (in the sense of the modified
realizability interpretation; cf. Chapter 4) by transfinite recursion

TR≺(R≺) R≺Fx = Fx(λyρif x ≺ y thenR≺Fy).

Note that here ≺ is decidable, but in general ≺lex is not. However, we can
reformulate open induction as

(11) ∀α
(
∀n, xρ, γρω(x ≺ αn→ U(ᾱn ∗ x@ γ))→ U(α)

)
→ ∀αU(α).

This scheme is (provably in HAω[X]) equivalent to the formulation above
using

∀n, xρ, γ
(
x ≺ αn→ U(ᾱn ∗ x@ γ)

)
↔ ∀β ≺lex αU(β),

which follows from the extensionality of open predicates.

3. OPEN RECURSION AND VARIANTS 56

This reformulation of open induction suggests the following recursion
scheme, which we call open recursion:

OR≺,ρ(Ro
≺) Ro

≺Fα =N Fα
(
λn, xρ, β.if x ≺ αn thenRo

≺F (ᾱn ∗ x@ β)
)

where ≺ is primitive recursive with HAω ` TI≺.

Update Induction and Recursion. Before introducing update induc-
tion and recursion, we need to fix an encoding of “partial sequences”. We do
this by encoding partial objects of type ρ into objects of type N×ρ.9 When-
ever the first component is zero this indicates the value is “undefined” and
if it is non-zero the value is the second component.10 Let α : (N× ρ)ω, then
we call α a partial sequence of type ρ, and define the sequences dom(α) : Nω

and val(α) : ρω by

dom(α)n = π0(αn) and val(α)n = π1(αn).

We also write n ∈ dom(α) for dom(α)n 6= 0, n /∈ dom(α) for dom(α)n = 0,
and α[n] for val(α)n.

For a partial sequence α of type ρ and x : ρ we define the update αxn by

(αxn)(m) :=

{
〈1, x〉 if m = n,

α(m) otherwise.

Update induction is given by

UIU ∀α
(
∀n, xρ(n /∈ dom(α)→ U(αxn))→ U(α)

)
→ ∀αU(α),

where U ranges over open predicates of appropriate arity.
Update recursion is given by

URρ(Ru) RuFα =N Fα
(
λn, xρ.if n /∈ dom(α) thenRuFαxn

)
.

Extended Update Induction and Recursion. Whereas the update
induction hypothesis allows only reference to one-point extensions, extended
update induction allows reference to all (proper) extensions of a partial
sequence.

For x, y : N× ρ we define

x� y :↔ π0(x) = 0 ∧ π0(y) 6= 0,

or in other words x� y iff y is defined as a partial object and x is not.
Let α, β : (N×ρ)ω be partial sequences. Then we define α{β} : (N×ρ)ω

by:

(α{β})n :=

{
αn if n ∈ dom(α),

βn otherwise.

Extended update induction is given by

EUIU ∀α
(
∀n∀β(αn� βn→ U(α{β}))→ U(α)

)
→ ∀αU(α),

9Alternatively one could encode partial objects of type ρ into ρ itself, or use sum
types instead.

10This notion of partiality should not be confused with the notion from Chapter 2.
Here, by a case distinction on the first component, we can actually decide in the theory
whether something is defined or not.

3. OPEN RECURSION AND VARIANTS 57

where U ranges over open predicates of appropriate arity. Note that αn�
βn if and only if n ∈ dom(β) and n /∈ dom(α), i.e., n is a witness that α{β}
is “more defined” than α.

Extended update recursion is given by

EURρ(Re) ReFα(N×ρ)ω =N Fα (λn, β.if αn� βn thenReF (α{β})) .

Lemma 3.5. In HAω[X] it is provable that OI implies EUI, and that EUI
implies UI.

Proof. OI→ EUI: Assume

(12) ∀α
(
∀n∀β(αn� βn→ U(α{β}))→ U(α)

)
.

We show: ∀αU(α). Let ≺ be defined by x ≺ y iff y � x. Clearly TI≺ is
provable, so we can argue by OI. We have to show U(α) from the assumption

(13) ∀β ≺lex αU(β).

By (12) it suffices to show U(α{β}) for all n and β with αn � βn. Given
n and β with αn � βn, choose m ≤ n minimal with αm � βm. Then
ᾱm = (α{β})m and (α{β})m = βm ≺ αm. Thus α{β} ≺lex α and the
claim follows from (13).

EUI → UI: Similar, using αxn(m) = (α{αxn})(m) for all m, and exten-
sionality of open predicates. �

Theorem 3.6. The following principles are equivalent over PAω[X]:

(1) open induction OI,
(2) extended update induction EUI,
(3) update induction UI, and
(4) dependent choice DC.

Proof. By the last lemma we only have to prove two directions.
UI→ DC: Assume

(14) ∀n∀xρ∃yρA(n, x, y).

We have to show that there exists fN→ρ with A(n, f(n), f(n+ 1)) for all n.

Call α(N×ρ)ω a partial choice function if

0 ∈ dom(α) ∧ ∀n (n+ 1 ∈ dom(α)→ n ∈ dom(α) ∧A(n, α[n], α[n+ 1])) .

Now define
U(α) :↔ α is not a partial choice function.

Then U is an open predicate. Clearly, any α with domain {0} is a partial
choice function, i.e., ¬U(α). By the contrapositive of UI, there exists a
maximally defined partial choice function α, i.e.,

¬U(α) ∧ ∀n, xρ(n /∈ dom(α)→ U(αxn)).

It suffices to prove that α is total, i.e., n ∈ dom(α) for all n, since then
f := val(α) is a choice function. Assume that α is not total; then there exists
a least n with n+1 /∈ dom(α). By (14) there exists y such that A(n, α[n], y).
Since n is minimal, we have n ∈ dom(α) and therefore ¬U(αyn+1). But this
contradicts the maximality of α.

DC→ OI: We prove the contrapositive of OI, i.e.,

∃α¬U(α)→ ∃α.¬U(α) ∧ ∀β ≺lex αU(β).

3. OPEN RECURSION AND VARIANTS 58

Calling a sequence α bad, if ¬U(α) and good otherwise, this becomes the
well-known minimal-bad-sequence argument of [30].

Define B(sρ
∗
) := ∃α ∈ s¬U(α) and assume that there is a bad sequence,

i.e., ∃α¬U(α), i.e., B(〈〉). We have to show that there is (lexicographically)
minimal bad sequence.

We now use the following variant of dependent choice which is derivable
from DCρ∗ (see the next lemma):

(15) ∀sρ∗∃xρA(s, x)→ ∃αN→ρ∀nA(ᾱn, αn).

We use (15) with

A(s, x) :=
(
B(s)→ B(s ∗ x) ∧ ∀y ≺ x¬B(s ∗ y)

)
.

We now prove ∀s∃xA(s, x). Using classical logic, it suffices to prove
B(s) → ∃x.B(s ∗ x) ∧ ∀y ≺ x¬B(s ∗ y), for all s. So let s with B(s) be
given. We have to prove that there is a ≺-minimal x with B(s ∗ x). By the
contraposition of TI≺ (which is the minimum principle for ≺), it suffices to
show ∃xB(s ∗ x). But, by the definition of B(s), there is an α ∈ s with
¬U(α), and hence B(s ∗ α|s|). This finishes the proof of ∀s∃xA(s, x).

So by (15), we obtain an α with

(16) ∀n
(
B(ᾱn)→ B(ᾱ(n+ 1)) ∧ ∀y ≺ αn¬B(ᾱn ∗ y)

)
.

Induction on n, and B(〈〉) yields ∀nB(ᾱn), i.e., ∀n∃β ∈ ᾱn¬U(β). By
Remark 3.3 (2), we conclude ¬U(α), i.e., α is a bad sequence. It remains
to prove that α is indeed a minimal bad sequence. Let β ≺lex α; then there
exists n with ᾱn = β̄n and βn ≺ αn. Therefore (16) implies ¬B(β̄(n+ 1)),
that is ∀δ ∈ β̄(n+ 1)U(δ), in particular U(β) what we had to prove. �

Lemma 3.7. The following is provable in HAω[X] + DC:

(1) ∀xρ∃yρB(x, y)→ ∀zρ∃fN→ρ∀n.f0 = z ∧B(f(n), f(n+ 1)), and
(2) ∀sρ∗∃xρA(s, x)→ ∃αN→ρ∀nA(ᾱn, αn).

Proof. For (1), see [22, p. 351 f.]. For (2), let A(sρ
∗
, xρ) be given with

∀s∃xA(s, x). Define

B(sρ
∗
, tρ
∗
) :↔

(
t = s ∗ last(t) ∧A(s, last(t))

)
,

where last(t) := t|t|−1 if t 6= 〈〉 and last(t) := 0ρ otherwise. Using the
assumption on A, one easily shows ∀s∃tB(s, t), and hence by (1) (for ρ∗

instead of ρ and z := 〈〉), there exists an f with f0 = 〈〉 and for all n

f(n+ 1) = f(n) ∗ last(f(n+ 1)) ∧A
(
f(n), last(f(n+ 1))

)
.

Putting α(n) = last(f(n + 1)) one gets ᾱn = f(n) by induction on n. This
yields ∀nA(ᾱn, αn) as desired. �

Theorem 3.8. Both G and G satisfy OR.

Proof. We only have to prove G |= OR. Assume that ≺ is a primitive
recursive binary relation with HAω ` TI≺. Let D be a defined constant with
the computation rule (additionally to the ones of Gödel’s T)

DFα . Fα
(
λn, x, γ.if x ≺ αn thenDF (ᾱn ∗ x@ γ)

)
: N,

where DFα : N. Define R := [[D]] ∈ |C|. It is sufficient to prove that R is
total. Let F be total. In order to prove that RFα is total for all total α,

4. DEFINABILITY 59

we show that RFα⊥ is total for all total α. This is sufficient, because if α is
total, then α⊥ is total too and α⊥ ⊆ α. Hence RFα⊥ ⊆ RFα and therefore
RFα is total whenever RFα⊥ is total.

By Lemma 2.2, we have

(17) RFα⊥ is total↔ ∃m.RF (ᾱm@⊥) is total.

Let X be a predicate variable of arity (ρ∗). We define an {X}-assignment
Ξ by

Ξ(X) := {s ∈ Gρ∗ | RF (s@⊥) is total}.
For all total α we get by (17), G,Ξ |= ∃mX(ᾱm) if and only if RFα⊥ is
total. Hence it is sufficient to prove G,Ξ |= ∀α∃mX(ᾱm). We do this using
open induction in G on the open predicate U(α) := X∃(α) = ∃mX(ᾱm).
Note that open induction is valid in G by Theorem 3.6.

Let α be total and suppose the open induction hypothesis

(18) G,Ξ |= ∀n, x, γ
(
x ≺ αn→ X∃(ᾱn ∗ x@ γ)

)
.

We have to prove G,Ξ |= X∃(α), i.e., RFα⊥ is total. By the definition of
R, we get

RFα⊥ = Fα⊥([[λf, βλn, x, γ.if x ≺ β(n) thenDf(β̄n ∗ x@ γ)]](F, α⊥)).

Because F and α⊥ are total it suffices to prove that RF (α⊥n ∗ x @ γ) is
total for n, x, and γ total with x ≺ α⊥n. Since n is total we conclude
α(n) = α⊥(n) and therefore by (18), RF (ᾱn ∗ x @ γ)⊥ is total. Clearly,
(ᾱn ∗ x@ γ)⊥ ⊆ α⊥n ∗ x@ γ, and hence monotonicity implies

RF (ᾱn ∗ x@ γ)⊥ ⊆ RF (α⊥n ∗ x@ γ).

Therefore, RF (α⊥n ∗ x@ γ) is total as well, which completes the proof. �

Analogously to the last proof, one can show that UR and EUR are valid
in G and G. This also follows from Theorem 4.3 below.

4. Definability

In this section we study the question whether one form of recursion
scheme can be defined from the other. In order to do so, we first need to fix
what we mean when we say that a functional defines another one.

For the rest of this chapter, we set X := ∅.

Definition 4.1. Let F ,G, and ∆ be sets of closed HAω-formulas, such
that all formulas in F and G are existential (i.e., of the form ∃xA with A
arbitrary). Then F defines G in ∆ (or G is definable from F in ∆) if for
each formula ∃ΨG(Ψ) ∈ G there is a finite subset {∃Φ1F1, . . . ,∃ΦnFn} of F
and a closed term t such that

E−HAω + ∆ + F1 + · · ·+ Fn ` G(tΦ1 · · ·Φn).

If ∆ is empty we just say that F defines G. If F defines G, and G defines F ,
we say that they are equivalent .

Typically, F and G from the definition above are two of our schemes
introduced in the last section and thus consist of formulas with a leading
existential quantifier, followed by some universal quantifiers, and with an
equation as kernel.

4. DEFINABILITY 60

Remark 4.2. If F defines G in ∆ and G |= ∆,F , then also G |= G.

Theorem 4.3. OR defines EUR, and EUR defines UR.

Proof. We first show that EUR is definable from OR. Define ≺ to be
the inverse relation of �, i.e., x ≺ y iff y � x. Note that ≺ is well-founded.
Let α, β be two partial sequences of type ρ and assume there exists n such
that αn� βn. So there exists a minimal m ≤ n such that αm� βm, but
then

βm ≺ αm and ᾱm ∗ βm@ (α{β}) = α{β},
so we have just showed how to define

λn, β.if αn� βn thenG(α{β})

in terms of

λn, x, γ.if x ≺ αn thenG(ᾱn ∗ x@ γ).

Thus it is clear that OR defines EUR.
It remains to prove that UR is definable from EUR. Let α be a partial

sequence of type ρ and n /∈ dom(α). Then for any x : ρ,

αn� 〈1, xρ〉 and αxn = α{ᾱn ∗ 〈1, x〉@ α}.

Now the claim follows as above. �

Theorem 4.4. MBR is definable by UR.

Proof. Given H : ρ∗ → (ρ→ N)→ ρω we define H̃ by

H̃(u(N×ρ)∗ , f) := H(π1(u), f),

where π1(u) denotes componentwise right projection. Using UR we can
define a term Φ satisfying

ΦY Hα(N×ρ)ω =N Y (λn.β(n)),

where β(n) = α[n] whenever n ∈ dom(α), and otherwise

β(n) = H̃(ᾱm, λxρ.ΦY Hαxm, n),

with m = mink≤n(k /∈ dom(α)).11

Now we define Ψ by

ΨY Hs := ΦY H(s′ @⊥),

where s′ := 〈〈1, s0〉, . . . , 〈1, s|s|−1〉〉 : (N×ρ)∗ and ⊥(n) := 〈0, 0ρ〉. By exten-
sionality we obtain

(s′ @⊥)
x
|s| = (s ∗ x)′ @⊥.

11By extensionality, UR is equivalent to

RoFα = Fα(λn.if n /∈ dom(α) then λx.RoFαxn).

Therefore, the reference to λxρ.ΦY Hαxm for fixed m /∈ dom(α) in the definition is
unproblematic.

4. DEFINABILITY 61

We now prove that Ψ satisfies the equation for modified bar recursion (where
we omit the arguments Y and H):

Ψs = Φ(s′ @⊥)

(∗)
= Y

(
s@ H̃((s′ @⊥)|s|, λxρ.Φ(s′ @⊥)

x
|s|)
)

= Y
(
s@ H̃(s′, λxρ.Φ((s ∗ x)′ @⊥))

)
= Y

(
s@H(s, λxρ.Ψ(s ∗ x))

)
.

At (∗) note that n ∈ dom(s′@⊥) if and only if n < |s|. So if n /∈ dom(s′@⊥)
then n ≥ |s| and hence mink≤n(k /∈ dom(s′ @⊥)) = |s|. �

The next theorem is already implicitly indicated in [4, Section 6].

Theorem 4.5. wBBC is definable by UR.

Proof. With UR we can define a functional Φ such that

ΦY Hα =N Y
(
λn.if n ∈ dom(α) then α[n] elseH(n, λxρ.ΦY Hαxn)

)
,

where α : (N× ρ)ω. For a list s : (N× ρ)∗ we define s↑ : (N× ρ)ω by

(〈〉)↑(m) := 〈0, 0ρ〉, and (s ∗ 〈n, x〉)↑(m) :=

{
〈1, x〉 if n = m,

s↑(m) otherwise.

From extensionality we obtain (s↑)
x
n = (s ∗ 〈n, x〉)↑. So, for ΨY Hs :=

ΦY Hs↑, we conclude

ΨY Hs = Y
(
λn.if n ∈ dom(s↑) then s↑[n] elseH(n, λxρ.ΦY H(s↑)

x

n)
)

= Y
(
λn.if n ∈ dom(s↑) then s↑[n] elseH(n, λxρ.ΦY H(s ∗ 〈n, x〉)↑)

)
= Y

(
s{λn.H(n, λxρ.ΨY H(s ∗ 〈n, x〉))}

)
,

where the last equality holds by extensionality. �

4.1. Equivalence of MBR and wMBR. Besides minor technical dif-
ferences we follow [7] in this subsection.

Lemma 4.6. MBRρ is definable from wMBRρω .

Proof. We first need some auxiliary functions. For s = 〈s0, . . . , sn−1〉
of type ρ∗ and u = 〈u0, . . . , um−1〉 of type (ρω)∗, we define

up s = 〈λks0, . . . , λksn−1〉 : (ρω)∗, and

downu = 〈u0(0), . . . , um−1(0)〉 : ρ∗.
We claim:

(i) down(up s) = s,
(ii) (up s) ∗ (λkx) = up(s ∗ x),

(iii) λn.((up s) @ λkα)nn = s@ α.

The first two statements are immediate; for (iii) let n : N. If n < |s| = |up s|,
then

((up s) @ λkα)nn = (up s)nn = (λksn)n = sn = (s@ α)n.

Otherwise, if n ≥ |s|, we get

((up s) @ λkα)nn = (λkα)nn = αn = (s@ α)n.

4. DEFINABILITY 62

So with extensionality the claim follows.
Now given functionals Y : ρω → N and H : ρ∗ → (ρ → N) → ρω we

define Ỹ : (ρω)ω → N and H̃ : (ρω)∗ → (ρω → N)→ ρω by

Ỹ (δ) = Y (λn.δnn),

H̃(u, f) = H(downu, λxρ.f(λkx)).

Now let Ψ with wMBRρω(Ψ) be given. We conclude:

ΨỸ H̃(up s) = Ỹ
(
(up s) @ λk.H̃(up s, λαρ

ω
.ΨỸ H̃((up s) ∗ α))

)
= Ỹ

(
(up s) @ λk.H(down(up s), λxρ.ΨỸ H̃((up s) ∗ (λkx)))

)
= Ỹ

(
(up s) @ λk.H(s, λxρ.ΨỸ H̃(up(s ∗ x)))

)
= Y

(
λn.((up s) @ λk.H(s, λxρ.ΨỸ H̃(up(s ∗ x))))nn

)
iii
= Y

(
s@H(s, λxρ.ΨỸ H̃(up(s ∗ x)))

)
.

Hence MBRρ(λY Hs.ΨỸ H̃(up s)). �

Corollary 4.7. Modified bar recursion and weak modified bar recursion
are equivalent.

4.2. Definability of SBR by MBR. In this subsection we show how
Spector’s bar recursion can be defined by a nested use of modified bar re-
cursion. First we need the following minimization functional:

Definition 4.8. µ̃(Y, α) = minn≥0(Y (α, n) < n).

It was observed by Howard in [21, Lemma 3C, p. 113] that µ̃ is definable
by SBR, more precisely by SBRρ,N if ρω is the type of α in the definition
above. We will now see that µ̃ is also definable by modified bar recursion. For
this, we use the same idea as in [7] but our implementation and verification
proof is different. Lemma 4.13 and 4.14 are from loc. cit. but we have filled
some gaps which needed bar induction for verification.

First, we need the following auxiliary functional:

Lemma 4.9. The following recursion scheme is definable from MBR:

ΦY Hαn =N Y
(
ᾱn@H(α, n,ΦY Hα(n+ 1))

)
.

Proof. For H : ρω → N→ N→ ρω and α : ρω define

Hα(s, fρ→N) := H(α, |s|, f(α|s|)).

Suppose MBRρ(Ψ) and define ΦY Hαn := ΨY Hα(ᾱn). By the defining
equations for Ψ and Hα, we conclude:

ΦY Hαn = ΨY Hα(ᾱn)

= Y
(
ᾱn@Hα(ᾱn, λxρ.ΨY Hα(ᾱn ∗ x))

)
= Y

(
ᾱn@H(α, n,ΨY Hα(ᾱn ∗ αn))

)
= Y

(
ᾱn@H(α, n,ΦY Hα(n+ 1))

)
. �

Lemma 4.10. The minimization functional µ̃ is definable from MBR.

4. DEFINABILITY 63

Proof. The proof is based on the following (informal) observation.
Let n := µ̃(Y, α) then n > 0. By the minimality of n, we know that
Y (α, n− 1) ≥ n− 1 and hence

Y (α, n− 1) + 1 ≥ n.

Therefore we can use Y (α, n− 1) + 1 as an upper bound for a bounded
search for n. So our main task is to define Y (α, n− 1) using MBR.

Let µ̃b be the bounded variant of µ̃, i.e., µ̃b(Y, α,m) is the least n with
n ≤ m such that Y (α, n) < n if such an n exists, and m + 1 otherwise.
Clearly, µ̃b is definable by primitive recursion and always positive.

For readability we write (α, n) for (α, n). We define the functional Φ
using the scheme from Lemma 4.9 (and hence MBR) by

Φ(Y, α, n) = Y
(
ᾱn@ (α, µ̃b (Y, α,Φ(Y, α, n+ 1) + 1)− 1)

)
.

Now we set

µ̃(Y, α) := µ̃b(Y, α,Φ(Y, α, 0) + 1).

Fix Y and α. For readability we omit the arguments Y and α of µ̃, µ̃b, and
Φ. By the definition of µ̃ and µ̃b we obtain

(19) µ̃ > µ̃b(n)→ µ̃b(n) = n+ 1.

In order to prove that our definition of µ̃ is correct, it suffices to show
that the search is successful, i.e., µ̃ ≤ Φ(0) + 1. Assume the contrary, i.e.,

(20) µ̃ > Φ(0) + 1.

We now prove µ̃ > Φ(n) +n+ 1 by induction on n. Of course, this gives the
desired contradiction for n = µ̃. In the case n = 0 this follows from (20). In
the induction step n→ n+ 1 the IH is µ̃ > Φ(n) + n+ 1. We now claim

(21) Φ(n) + 1 ≥ µ̃b(Φ(n+ 1) + 1).

Case µ̃b(Φ(n+1)+1)−1 < n. By IH we have n < µ̃ and thus Y (α, n) ≥ n.
We conclude:

Φ(n) + 1 = Y (α, n) + 1 ≥ n+ 1 > µ̃b(Φ(n+ 1) + 1).

Case µ̃b(Φ(n+ 1) + 1)− 1 ≥ n. Then by the definition of Φ:

Φ(n) + 1 = Y
(
α, µ̃b(Φ(n+ 1) + 1)︸ ︷︷ ︸

=:S

−1
)

+ 1 =: R.

If the search S is successful, we obtain

R ≥ µ̃b(Φ(n+ 1) + 1)− 1 + 1 = µ̃b(Φ(n+ 1) + 1).

Otherwise, if S is not successful, we have

R = Y
(
α,Φ(n+ 1) + 2− 1

)
+ 1 = Y

(
α,Φ(n+ 1) + 1

)
+ 1

≥ Φ(n+ 1) + 1 + 1 = µ̃b(Φ(n+ 1) + 1).

Thus we have proved Φ(n) + 1 ≥ µ̃b(Φ(n+ 1) + 1).

4. DEFINABILITY 64

We conclude:

µ̃ > Φ(n) + n+ 1 by IH

≥ µ̃b(Φ(n+ 1) + 1) + n see above

= Φ(n+ 1) + (n+ 1) + 1 by (19)

This completes the proof. �

Remark 4.11. Assuming extensionality and the following weak conti-
nuity property

∀Y ρω→N∀α∃n (Y (α, n) < n) ,(22)

then µ̃ is primitive recursive.

Proof. Given Y and α, define

βY,α(n) := β(n) :=

{
0 if ∃m ≤ n+ 1.Y (α,m) < m,

α(n) otherwise.

By (22) there exists n such that Y (α, n) < n. Since the formula Y (α, n) < n
is quantifier-free we may assume that n is minimal. By construction and
extensionality we know that β = (α, n− 1). The minimality of n yields
Y (β) = Y (α, n− 1) ≥ n−1 and therefore λY, α.µ̃b(Y, α, Y (βY,α)+1) satisfies
the defining equation for µ̃. �

Remark 4.12. µ̃ can be generalized to µ̃′ with

µ̃′(Y, α, k) = min
n≥k

(Y (α, n) < n).

An easy calculation shows that we can put

µ̃′(Y, α, k) := µ̃(λβ.max{Y (ᾱk @ β), k −· 1}, α).

Lemma 4.13. SBRρ,N is definable by MBR and µ̃ using BI′D.

Proof. Before we begin with the proof, let us fix the following notation.
For n : N let n↑ := embρ(n) denote the canonical embedding of N into ρ,

and for x : ρ let x↓ := ψρ(x) : N be the inverse operation. For a list s =
〈s0, . . . , sn−1〉 : ρ∗ we write 〈xσ, s〉 for the list 〈〈x, s0〉, . . . , 〈x, sn−1, 〉〉 : (σ ×
ρ)∗. Projections are extended to lists and sequences componentwise. We
use α and β as variables of type (N× ρ)ω.

We want to define the functional Φ satisfying the equation

ΦY GHs =N

{
G(s) if Y (ŝ) < |s|,
H(s, λxρ.ΦY GH(s ∗ x)) otherwise.

(23)

Given Y,G, and H (of appropriate type) we define H̃ and ỸG,k by

H̃(u(N×ρ)∗ , f (N×ρ)→ρ,m) =N×ρ 〈1, [H(π1(u), λxρ.f〈0, x〉)]↑〉

and

ỸG,k(α) =N

{
G(π1(ᾱn)) if ∀i < nπ0(αi) = 0,

(π1(αn))↓ otherwise.
(24)

4. DEFINABILITY 65

where n = µ̃′(Y, π1(α), k). First note that:

Y (ŝ) ≥ |s| → ∀β.ỸG,|s|(〈0, s〉 ∗ β) = ỸG,|s|+1(〈0, s〉 ∗ β).(25)

To see this assume Y (ŝ) ≥ |s|, then for α := 〈0, s〉∗β we get µ̃′(Y, π1(α), |s|) >
|s|, and therefore µ̃′(Y, π1(α), |s|) = µ̃′(Y, π1(α), |s| + 1). Hence both sides
in the conclusion of (25) are equal.

Now assume MBRN×ρ(Ψ) and define

ΦY Hs =N Ψ(ỸG,|s|, H̃, 〈0, s〉).

We now have to verify (23). By unfolding the definitions, we get:

ΦY Hs = Ψ(ỸG,|s|, H̃, 〈0, s〉)

= ỸG,|s|
(
〈0, s〉@ H̃(〈0, s〉, λpN×ρ.Ψ(ỸG,|s|, H̃, 〈0, s〉 ∗ p))

)
= ỸG,|s|

(
〈0, s〉@ λm〈1, [H(s, λxρ.Ψ(ỸG,|s|, H̃, 〈0, s ∗ x〉))]↑〉

)
.

In the case Y (ŝ) < |s|, we have

ΦY Hs = ỸG,|s|(〈0, s〉@ . . .)

= G(π1(〈0, s〉)) by (24) since n = |s|
= G(s).

Now assume Y (ŝ) ≥ s. Define Q(t) for t : ρ∗ to be

(26) Ψ(ỸG,|s|, H̃, 〈0, s ∗ t〉) = Ψ(ỸG,|s|+1, H̃, 〈0, s ∗ t〉).

First, we prove Q(t) for all t using BI′D with P (t) defined as Y (ŝ ∗ t) < |s∗t|.
Let us verify the premises of BI′D: That P is an infinite bar follows because
of the presence of µ̃′. Now assume P (t); we show Q(t). We get

Ψ(ỸG,|s|, H̃, 〈0, s ∗ t〉) = YG,|s|(〈0, s ∗ t〉@ . . .) = G(s ∗ t′),

where t′ is the shortest initial segment of t with Y (ŝ ∗ t′) < |s ∗ t′|. By our
assumption on s we know t′ 6= 〈〉. Accordingly, a similar calculation shows

Ψ(ỸG,|s|+1, H̃, 〈0, s ∗ t〉) = G(s ∗ t′).

This completes the proof of P (t)→ Q(t). Now assume Q(t ∗ x) for all x; we
must show Q(t). By assumption

λxρ.Ψ(ỸG,|s|, H̃, 〈0, s ∗ (t ∗ x)〉) = λxρ.Ψ(ỸG,|s|+1, H̃, 〈0, s ∗ (t ∗ x)〉).

This gives

Ψ(ỸG,|s|, H̃, 〈0, s ∗ t〉)

= ỸG,|s|
(
〈0, s ∗ t〉@ λm〈1, [H(s ∗ t, λxρ.Ψ(ỸG,|s|, H̃, 〈0, s ∗ (t ∗ x)〉))]↑〉

)
= ỸG,|s|

(
〈0, s ∗ t〉@ λm〈1, [H(s ∗ t, λxρ.Ψ(ỸG,|s|+1, H̃, 〈0, s ∗ (t ∗ x)〉))]↑〉

)
(25)
= ỸG,|s|+1

(
〈0, s ∗ t〉@ λm〈1, [H(s ∗ t, λxρ.Ψ(ỸG,|s|+1, H̃, 〈0, s ∗ t ∗ x〉))]↑〉

)
= Ψ(ỸG,|s|+1, H̃, 〈0, s ∗ t〉).

This finishes the proof of ∀tQ(t).

4. DEFINABILITY 66

Finally, let us calculate Φ:

ΦY Hs = ỸG,|s|
(
〈0, s〉@ λm〈1, [H(s, λxρ.Ψ(ỸG,|s|, H̃, 〈0, s ∗ x〉))]↑〉

)
(24)
=
[
H(s, λxρ.Ψ(ỸG,|s|, H̃, 〈0, s ∗ x〉))

]↑↓
(26)
= H(s, λxρ.Ψ(ỸG,|s|+1, H̃, 〈0, s ∗ x〉))

= H(s, λxρ.ΦY GH(s ∗ x)).

This is what we had to show. �

Lemma 4.14. SBR is definable from {SBRρ,N | ρ ∈ Ty} using BI′D.

Proof sketch. We only show that SBRρ×τ,N defines SBRρ,τ→N. The
rest follows using the usual primitive recursive coding machinery.

We want to define a functional Φ satisfying

(27) ΦY GHs =τ→N

{
G(s) if Y (ŝ) < |s|,
H(s, λxρ.ΦY GH(s ∗ x)) otherwise.

Given Y , G, and H we define (with α : (ρ×τ)ω, u : (ρ×τ)∗, and f : (ρ×τ)→
N):

Y ′(α) := Y
(
λn.π0(α(n+ 1))

)
+ 1,

G′(u) := G
(
π0(u), π1(u|u|−1)

)
,

H ′(u, f) := H
(
π0(u), λxρλzτ .f〈x, z〉, π1(u|u|−1)

)
,

where π0〈u0, . . . , u|u|−1〉 := 〈π0(u1), . . . , π0(u|u|−1)〉 and we stipulate sρ
∗
x :=

0ρ for x < 0.
Moreover, for s : ρ∗, t : τ∗, and z : τ we define

〈〈s, z〉〉 := 〈〈0ρ, z〉, 〈s0, z〉, . . . , 〈s|s|−1, z〉〉,
〈s, t〉 := 〈〈s0, t0〉, . . . , 〈s|s|−1, t|s|−1〉〉.

Then we have π0〈〈s, z〉〉 = s and π1(〈〈s, z〉〉|〈〈s,z〉〉|−1) = z. Also note that:

Y (ŝ) < |s| ↔ Y ′(〈〈s, z〉〉@ 0) < |〈〈s, z〉〉|.
Now let Ψ with SBRρ×τ,N(Ψ) be given. We now verify that

λY GHsz.ΨY ′G′H ′〈〈s, z〉〉
satisfies Equation (27). In the case Y (ŝ) < |s| we get

Ψ′〈〈s, z〉〉 := ΨY ′G′H ′〈〈s, z〉〉 = G′〈〈s, z〉〉 = G(s, z).

And in case Y (ŝ) ≥ |s| we have

Ψ′〈〈s, z〉〉 = H ′
(
〈〈s, z〉〉, λyρ×τ .Ψ′(〈〈s, z〉〉 ∗ y)

)
= H

(
s, λxρλzτ0 .Ψ

′(〈〈s, z〉〉 ∗ 〈x, z0〉), z
)
.

So it is enough to show Ψ′〈〈s, z〉〉 ∗ 〈x, z0〉 = Ψ′〈〈s ∗ x, z0〉〉. This follows from

Q(s) := ∀t, t′τ
∗ (
s 6= 〈〉 ∧ t|s|−1 = t′|s|−1 → Ψ′〈s, t〉 = Ψ′〈s, t′〉

)
for all s. We prove this by BI′D with the decidable and infinite bar P (s) :=
Y (ŝ) < |s|. That P is an infinite bar follows from the fact that SBRρ,N

4. DEFINABILITY 67

defines µ̃ (cf. the beginning of this subsection) and thus also µ̃′. Proving
that P (s)→ Q(s) and ∀xQ(s ∗ x)→ Q(s) for all s is easy. �

Corollary 4.15. SBR is definable from MBR using BI′D.

Proof. Combine the last three lemmas. �

4.3. Auxiliary Definitions. For the next section we need a slight gen-
eralization of modified bar recursion.

Lemma 4.16. MBR is equivalent to each of the following schemes:

(1) ΨY Hs =N Y
(
s ∗H(s, λxρ.ΨY H(s ∗ x))

)
,

(2) ΨY Hs =ρω s@H
(
s, λxρ.Y (ΨY H(s ∗ x))

)
.

Proof. Easy. �

Lemma 4.17. Over BI′D + Cont, MBR defines the following scheme:

(28) ΨY Hsρ
∗

=N Y
(
s ∗H(s, λxρλtρ

∗
.ΨY H(s ∗ t ∗ x))

)
.

Moreover, (28) is equivalent to each of the following schemes:

ΨY Hsρ
∗

=N Y
(
s@H(s, λxρλtρ

∗
.ΨY H(s ∗ t ∗ x))

)
,(29)

ΨY Hsρ
∗

=ρω s@H(s, λxρλtρ
∗
.Y (ΨY H(s ∗ t ∗ x)))).(30)

Proof. The equivalences of (28) with (29) and with (30) are easy to
see. We only define (28) using MBRρ∗ based on the argument sketched in
[6, Lemma 2]. For this, we first need some auxiliary functionals for lists of
lists. We use the following type conventions: δ : (ρ∗)ω, u, v, w : ρ∗∗, s, t : ρ∗,
and α : ρω. Now let us define functionals melt : ρ∗∗ → ρ∗, freeze : ρ∗ → ρ∗∗

and flat : (ρ∗)ω → ρω by

melt〈u0, . . . , un−1〉 := u0 ∗ · · · ∗ un−1,

freeze〈s0, . . . , sn−1〉 := 〈〈s0〉, . . . , 〈sn−1〉〉,
flat δn :=

(
melt(δ̄(n+ 1))

)
n
.

We also extend freeze to sequences α by freezeαn := 〈αn〉. Moreover, define

〈〉 /∈ u :↔ ∀n < |u|un 6= 〈〉, and 〈〉 /∈ δ :↔ ∀n δn 6= 〈〉.
Clearly, melt(freeze s) = s. We now claim the following:

(i) s 6= 〈〉 ∧ 〈〉 /∈ δ → flat(〈s〉 ∗ δ) = s ∗ flat(δ),
(ii) 〈〉 /∈ u ∧ 〈〉 /∈ δ → flat(u ∗ δ) = (meltu) ∗ flat(δ).

(ii) follows easily by induction on u using (i). It remains to prove (i). Let
s = 〈s0, . . . , sn〉 (i.e., |s| = n+1), 〈〉 /∈ δ, and k : N. We show: flat(〈s〉∗δ)k =
(s ∗ flat(δ))k.

Case k ≤ n. Then:

flat(〈s〉 ∗ δ)k =
(
melt((〈s〉 ∗ δ)(k + 1))

)
k

=
(
〈so, . . . , sn, . . . 〉

)
k

= sk.

And sk = (s ∗ flat(δ))k (for k = 0 this holds since s 6= 〈〉).
Case k > n. Then:

flat(〈s〉 ∗ δ)(k) =
(
melt((〈s〉 ∗ δ)(k + 1))

)
k

= (s ∗ δ0 ∗ . . . ∗ δ(k − 1))k
= (δ0 ∗ . . . ∗ δ(k − 1))k−|s| ,

4. DEFINABILITY 68

and

(s ∗ flat(δ))k = flat δ(k − |s|)
=
(
melt(δ̄(k − n))

)
k−|s|

= (δ0 ∗ . . . ∗ δ(k − |s|))k−|s| .

So the claim follows from 〈〉 /∈ δ. This completes the proof of (i).
Note that we have 〈〉 /∈ freeze s, 〈〉 /∈ freezeα, and flat(freezeα) = α.

Now given Y ρω→N and Hρ∗→(ρ→ρ∗→N)→ρω define

H ′(u, F ρ
∗→N) :=(ρ∗)ω freeze(H(meltu, λxρλtρ

∗
.F (t ∗ x))),

Y ′(δ) :=N Y (flat δ).

Let Φ′ satisfy Equation (1) from Lemma 4.16 at type ρ∗. Define ΦY Hu :=
Φ′Y ′H ′u. For readability we omit the arguments Y and H from Φ. By (ii),
we conclude for 〈〉 /∈ u:

Φ(u) = Y ′
(
u ∗H ′(u, λtρ∗ .Φ(u ∗ t))

)
= Y

(
flat
[
u ∗ freeze

(
H
(
meltu, λxρλtρ

∗
.Φ(u ∗ (t ∗ x))

))])
ii
= Y

(
melt(u) ∗ flat

(
freeze

(
H
(
meltu, λxρλtρ

∗
.Φ(u ∗ (t ∗ x))

))))
= Y

(
melt(u) ∗H

(
meltu, λxρλtρ

∗
.Φ(u ∗ (t ∗ x))

))
.

(31)

For u and i < |u| one easily defines u(i) and u(i) such that |u(i)| = i and

u = u(i) ∗ u(i). Let

Q(u) :↔
(
〈〉 /∈ u→ ∀i < |u|.Φ(u) = Φ

(
(freeze(meltu(i))) ∗ u(i)

))
.

We now prove ∀uQ(u) using BI′D (with P := Q) and Cont. Clearly, Q(u) is
decidable for all u. We now verify the remaining premises of BI′D.

(1) ∀δ∀k∃n ≥ k Q(δ̄n). Let δ and k be given and let n be a point of
continuity of Y at flat δ. W.l.o.g. we can assume n ≥ k. Suppose
〈〉 /∈ δ̄n and i < n. We have to show

Φ(δ̄n) = Φ
(
(freeze(melt δ̄i)) ∗ 〈δ(i), . . . , δ(n− 1)〉

)
.

Observe that

melt
(
(freeze(melt δ̄i)) ∗ 〈δ(i), . . . , δ(n− 1)〉

)
= melt δ̄n.

Using this and (31), we calculate:

Φ
(
(freeze(melt δ̄i)) ∗ 〈δ(i), . . . , δ(n− 1)〉

)
= Y

(
(melt δ̄n) ∗ . . .

)
= Y

(
(melt δ̄n) ∗H(melt δ̄n, λxρλt.Φ(δ̄n ∗ (t ∗ x)))

)
= Φ(δ̄n),

where in the second equality, we have used that n is a point of
continuity of Y at flat δ, and (melt δ̄n)∗α ∈ (flat δ)n for any α since
〈〉 /∈ δ̄n.

5. FAN FUNCTIONAL 69

(2) Let u and i be given with ∀tQ(u ∗ t), 〈〉 /∈ u, and i < |u|. Define

v := u(i) and w := u(i). We show: Φ(u) = Φ
(
(freeze(melt v)) ∗ w

)
.

We have melt(u) = melt
(
(freeze(melt v)) ∗ w

)
and thus by (31):

Φ
(
(freeze(melt v)) ∗ w

)
= Y

(
melt(u) ∗H

(
meltu, λxρλt.Φ

(
((freeze(melt v)) ∗ w) ∗ (t ∗ x)

)))
= Y

(
melt(u) ∗H(meltu, λxρλt.Φ(u ∗ (t ∗ x)))

)
= Φ(u),

where in the second step, we have used the assumption Q(u∗(t∗x)).

This finishes the proof of ∀uQ(u). In particular, Φ(u) = Φ(freeze(meltu))
whenever 〈〉 /∈ u. So we get

Φ
(
freeze(s) ∗ (t ∗ x)

)
= Φ

(
freeze(melt(freeze(s) ∗ (t ∗ x)))

)
= Φ

(
freeze(melt(freeze(s ∗ t ∗ x)))

)
= Φ

(
freeze(s ∗ t ∗ x)

)
.

(32)

Finally, define ΨY Hs := ΦY H(freeze s). Then:

Ψ(s) = Φ(freeze s)

(31)
= Y

(
melt(freeze s) ∗H(melt(freeze s), λxρλt.Φ(freeze(s) ∗ (t ∗ x))))

)
(32)
= Y

(
s ∗H(s, λxρλt.Φ(freeze(s ∗ t ∗ x)))

)
= Y (s ∗H(s, λxρλt.Ψ(s ∗ t ∗ x))),

which is the desired conclusion. �

5. Fan Functional

The fan functional computes the least modulus of uniform continuity of
functionals of the Cantor space into the naturals, where the Cantor space
are all 0-1 sequences, i.e., all sequences with values in {0, 1} which we encode
as sequences of naturals bounded by the constant 1 function.

Let us fix the following notations for the rest of this section: α and β
are variables of type Nω, p and Y are variables of type Nω → N, and s
is a variable of type N∗. We write α ≤ 1 for ∀nα(n) ≤ 1, and s ≤ 1 for
∀i < |s| si ≤ 1. Using these notations the fan functional is given by

FAN(Φ) Φ(Y) = min
n≥0

(
∀α, β ≤ 1(ᾱn = β̄n→ Y α = Y β)

)
.

In fact, the fan functional is a prominent example of a functional which
is total (in the sense that FAN is valid in G) but it is not computable w.r.t.
Kleene’s schemes S1–S9 over the Kleene-Kreisel total functionals. The latter
was first shown by Tait (unpublished), where he also showed that the fan
functional has a recursive associate.

We show that the fan functional is definable by modified bar recursion
and Kohlenbach’s variant of bar recursion (in BI′D + Cont) and thus provide
an algorithm for it. The algorithm is divided into two steps. First, we
define a search functional using MBR enabling us to decide predicates over

5. FAN FUNCTIONAL 70

the Cantor space. Second, we define a minimization functional using KBR
to get the desired witness for the modulus of uniform continuity.

Our algorithm for the fan functional is based on [6], which in turn is
based on [3]. The correctness proofs, however, are our own and we have
tried to keep the search functional as general as possible.

5.1. The Search Functional ε. The search functional ε computes
witnesses for predicates over the Cantor space whenever they exist. It is
given by the following equation

εps =Nω s@ [if p(εp(s ∗ 0)) then εp(s ∗ 0) else εp(s ∗ 1)](33)

where p : Nω → N and s : N∗.
Later we shall see that ε has the following property (assuming the con-

tinuity of p):

∃α ≤ 1 p(α) = 0↔ p(εp〈〉) = 0.

First, we show that ε is definable from MBR. Our proof is based on the
proof of Theorem 5 in [6].

Theorem 5.1. ε is definable from MBR in BI′D + Cont.

Proof. We have seen in Lemma 4.17 that the following functional Φ is
definable from MBR in BI′D + Cont:

Φ(pN
ω→N, s) =Nω s@H

(
s, p, λtN

∗
λxN.p(Φ(p, s ∗ t ∗ x))

)
.

H is defined by course-of-values recursion as follows

H(s, p, F, n) :=N


sn if n < |s|,
0 if n ≥ |s| and p(F (c, 0)) = 0,

1 if n ≥ |s| and p(F (c, 0)) 6= 0,

where c := 〈H(s, p, F, |s|), . . . ,H(s, p, F, n − 1)〉. Fix p and abbreviate Φp
by Ψ. We show

(34) ∀n.Ψ(s)(n) = Ψ
(
s ∗ (Ψs|s|)

)
(n)

by induction on n−· |s|. For n ≤ |s| this is trivial.
First observe that for each n ≥ |s|, we obtain by the defining equation

for H and Ψ that
(35)

Ψ(s)(n) = H(s, p, λtλx.p(Ψ(s ∗ t ∗ x)), n) =

{
0 if p(Ψ(s ∗ cs,n ∗ 0)) = 0,

1 if p(Ψ(s ∗ cs,n ∗ 0)) 6= 0,

where cs,n := 〈Ψ(s)(|s|), . . . ,Ψ(s)(n− 1)〉.
Now assume that n > |s|. By IH we have for all i with |s| < i < n:

Ψ(s)(i) = Ψ
(
s ∗Ψ(s)(|s|)

)
(i)

and therefore also

(36) cs,n = 〈Ψ(s)(|s|)〉 ∗ cs∗Ψ(s)(|s|),n.

5. FAN FUNCTIONAL 71

By (35) and (36) we obtain:

Ψ
(
s ∗Ψ(s)(|s|)

)
(n) =

{
0 if p

(
Ψ
(
s ∗ 〈Ψ(s)(|s|)〉 ∗ cs∗Ψ(s)(|s|),n ∗ 0

))
= 0,

1 otherwise,

=

{
0 if p

(
Ψ(s ∗ cs,n ∗ 0)

)
= 0,

1 otherwise,

= Ψ(s)(n).

This completes the proof of (34).
We now check that Ψ(s) = Φ(p, s) satisfies Equation (33) for each ar-

gument m. For m < |s| this is trivial since both sides are equal to sm. So
assume m ≥ |s|. If p(Ψ(s∗0)) = 0, then by (35) (with n = |s|) Ψ(s)(|s|) = 0
so by (34) Ψ(s)(m) = Ψ(s ∗ 0)(m) what we had to show. Similarly for
p(Ψ(s ∗ 0)) 6= 0. �

Theorem 5.2. The following is provable in E−HAω + ContN + ε for all
p : Nω → N and s : N∗ with s ≤ 1:

(1) εps ≤ 1,
(2) ∀α ≤ 1.p(α) = 0→ ∀n p(εp(ᾱn)) = 0,
(3) ∃α ∈ s(α ≤ 1 ∧ p(α) = 0)↔ p(εps) = 0,
(4) ∃α ≤ 1 p(α) = 0↔ p(εp〈〉) = 0.

Proof. The directions from left to right of (3) and (4) immediately
follow from (2) taking |s| respectively 0 for n. The other directions follow
from (1).

For (1) one first observes, by a case distinction on whether p(εps) = 0
or not, that

εps = εp(s ∗ (εps|s|)) and εps|s| ≤ 1.

By induction on n, this easily generalizes to

εps = εp(s ∗ ds,n) and ds,n ≤ 1,

where ds,0 := 〈〉 and ds,n+1 := ds,n ∗ (εp(s ∗ ds,n)|s ∗ ds,n|). Now given n : N
we have

εpsn = εp(s ∗ ds,n−· |s|)n ≤ 1,

which concludes the proof of (1).
For (2) suppose there is an α ≤ 1 with p(α) = 0. By continuity of p

there exists n such that

(37) ∀β ∈ ᾱn p(β) = 0.

Therefore also p(εp(ᾱm)) = 0 for all m ≥ n. We now prove

∀m ≤ n p(εp(ᾱm)) = 0

by induction on n −m. Case n = m. See above. Case m < n. By IH we
have

(38) p(εp(ᾱ(m+ 1))) = 0.

In the case p(εp(ᾱm ∗ 0)) = 0 we get εp(ᾱm) = εp(ᾱm ∗ 0) and hence
p(εp(ᾱm)). In the case p(εp(ᾱm ∗ 0)) 6= 0 we get εp(ᾱm) = εp(ᾱm ∗ 1).
Moreover, by (38), α(m) must be equal to 1, so (38) yields p(εp(ᾱm)) = 0.
This completes the proof. �

5. FAN FUNCTIONAL 72

Remark 5.3. Theorem 5.2 shows that it is possible to define univer-
sal and existential quantification on the Cantor space with ε. Define the
functionals ∃C ,∀C : (Nω → N)→ N by

∃C(p) = p(εp〈〉) and ∀C(p) = p(ε(¬p)〈〉),

where ¬p(α) = 1 −· p(α) is the negation of p if p is viewed as a predicate.
By the last theorem we get (provably in E−HAω + ContN + ε):

∃C(p) = 0↔ ∃α ≤ 1 p(α) = 0 and ∀C(p) = 0↔ ∀α ≤ 1 p(α) = 0.

5.2. Minimization. As we have seen in the last subsection it is pos-
sible to decide with ε whether a universal quantified predicate holds on the
Cantor space, so in particular we can decide for each n:

∀α, β ≤ 1(ᾱn = β̄n→ Y (α) = Y (β)).

Our next task is to find such an n (which can then also be chosen minimal).
This will be done using a slight generalization of Kohlenbach’s bar recursion
variant KBR.

Lemma 5.4. KBR is equivalent to the scheme KBR′ given by:

KBR′ρ,τ (Φ) ΦY GHJs =τ

{
G(s) if Y (s@ 0) =N Y (s@ J(s)),

H(s, λxρ.ΦY GHJ(s ∗ x)) otherwise,

where Y : ρω → N and s : ρω.

Proof. This proof is based on the proof of [6, Lemma 3], which in turn
is based on [24, Theorem 3.66]. Trivially, KBR is definable from KBR′.
For the converse direction, we first introduce some notations. The lifting of
addition of naturals to higher types, xρ + nN, is defined componentwise by
induction on ρ. In the same manner, cut-off subtraction xρ−· nN is lifted to
higher types. Recall the definitions of ψρ and embρ from the beginning of
this chapter. By (meta-) induction on ρ one immediately verifies that

ψρ(embρ n) = n, ψρ(x
ρ + 2) > 1, and (xρ + n)−· n = xρ.

Define

η(Jρ
∗→ρω , βρ

ω
, n) :=ρ


β(n)−· 2 if ψρ(β(n)) > 1,

J(ϕ(β̄(n+ 1))−· 2, n) if ψρ(β(n)) = 1,

0ρ if ψρ(β(n)) = 0,

where ϕ(s) := 〈s0, . . . , sk−1〉 with k = minn<|s|(ψρ(sn) = 1). By componen-
twise comparison, it is easy to see that the following equations hold:

(i) η(J, (s+ 2) @ 0ρ
ω
) = s@ 0ρ

ω
,

(ii) η(J, (s+ 2) @ 1ρ
ω
) = s@ J(s).

Using KBR, we can define

Ψ′(s) =τ

{
G(s−· 2) if Y (η(J, s@ 0ρ

ω
)) =N Y (η(J, s@ 1ρ

ω
)),

H
(
s−· 2, λxρ.Ψ′(s ∗ (xρ + 2))

)
otherwise,

where Ψ′ is short for ΨY GHJ . We leave it to the reader to verify that
ΦY GHJs := ΨY GHJ(s+ 2) satisfies KBR′. �

5. FAN FUNCTIONAL 73

Now we have all tools at hand to define the fan functional. We argue
informally in E−HAω+ContN+ε+KBR. First we use the search functional
ε to define Φ as

Φ(Y, s,m) := ε(λα.α ∈ s ∧ Y (α) 6= m)s.(39)

Note that Φ(Y, s,m) = s@ Φ(Y, s,m) so using KBR and Lemma 5.4 we can
define

Ψ(Y, s) :=N

{
0 if Y (Φ(Y, s, Y (s@ 0))) = Y (s@ 0),

1 + max{Ψ(Y, s ∗ 0),Ψ(Y, s ∗ 1)} otherwise.
(40)

Theorem 5.2 yields for all m and s with s ≤ 1:

∃α ≤ 1(α ∈ s ∧ Y (α) 6= m)↔ Y (s@ Φ(Y, s,m)) 6= m.

In particular, we obtain for m = Y (s@ 0):

∀α ≤ 1
(
α ∈ s→ Y (α) = Y (s@ 0)

)
↔ Y

(
s@ Φ(Y, s, Y (s@ 0))

)
= Y (s@ 0),

which by definition of Ψ gives

∀α ≤ 1
(
α ∈ s→ Y (α) = Y (s@ 0)

)
↔ Ψ(Y, s) = 0.(41)

Lemma 5.5. For all Y, s ≤ 1, and α ≤ 1 we have

α ∈ s→ Y (α) = Y (α, |s|+ Ψ(Y, s)).

Proof. Ind(Ψ(Y, s)). Case Ψ(Y, s) = 0. Use (41). Case Ψ(Y, s) > 0.
Let α ∈ s. We have to show:

Y (α) = Y (α, |s|+ Ψ(Y, s)).

By the definition of Ψ, Ψ(Y, s) > Ψ(Y, s ∗ α|s|). So by IH

∀β ≤ 1
(
β ∈ s ∗ α|s| → Y (β) = Y

(
β, |s|+ 1 + Ψ(Y, s ∗ α|s|)

))
.

In particular, we obtain (since α, (α, |s|+ Ψ(Y, s)) ∈ s ∗ α|s|)
(i) Y (α) = Y (α, |s|+ 1 + Ψ(Y, s ∗ α|s|)), and

(ii) Y (α, |s|+ Ψ(Y, s)) = Y
(

(α, |s|+ Ψ(Y, s)), |s|+ 1 + Ψ(Y, s ∗ α|s|)
)

.

Moreover:

|s|+ 1 + Ψ(Y, s ∗ α|s|) ≤ |s|+ 1 + max
i=0,1

Ψ(Y, s ∗ i) = |s|+ Ψ(Y, s).

Using this inequality we get(
(α, |s|+ Ψ(Y, s)), |s|+ 1 + Ψ(Y, s ∗ α|s|)

)
= (α, |s|+ 1 + Ψ(Y, s ∗ α|s|)).

So combining this, (i), and (ii) gives:

Y (α)
(i)
= Y (α, |s|+ 1 + Ψ(Y, s ∗ α|s|))

= Y
(

(α, |s|+ Ψ(Y, s)), |s|+ 1 + Ψ(Y, s ∗ α|s|)
)

(ii)
= Y (α, |s|+ Ψ(Y, s)).

This is what we had to prove. �

Lemma 5.6. Ψ(Y, s) is minimal w.r.t. the property of Lemma 5.5.

6. NOTES 74

Proof. Ind(Ψ(Y, s)). Case Ψ(Y, s) = 0. Trivial. Case Ψ(Y, s) > 0. Let
n be given with:

(42) ∀α ≤ 1
(
α ∈ s→ Y (α) = Y (α, |s|+ n)

)
.

Then n 6= 0 by (41). Assume that

(43) n < Ψ(Y, s) = 1 + max
i=0,1

Ψ(Y, s ∗ i).

By (43) there exists i ∈ {0, 1} such that n < 1 + Ψ(Y, s ∗ i) and by (42) we
get

∀α ≤ 1
(
α ∈ s ∗ i→ Y (α) = Y (α, |s|+ n)

)
.

But we also have

|s ∗ i|+ (n− 1) = |s|+ n < |s|+ 1 + Ψ(Y, s ∗ i) = |s ∗ i|+ Ψ(Y, s ∗ i),
which is a contradiction to the IH for s ∗ i, and hence n ≥ Ψ(Y, s) as
required. �

With Lemma 5.5 we get Y (α) = Y (α,Ψ(Y, 〈〉)) for all α ≤ 1, so in
particular:

∀α, β ≤ 1
(
ᾱ(Ψ(Y, 〈〉)) = β̄(Ψ(Y, 〈〉))→ Y (α) = Y (β)

)
.

Lemma 5.6 implies that Ψ(Y, 〈〉) is minimal with this property, so in other
words λY.ΨY 〈〉 is the fan functional.

Theorem 5.7. The fan functional is definable from ε+ KBR in ContN.
In particular, it is definable from MBR + KBR in BI′D + Cont.

Remark 5.8. Both ε and Ψ from above are definable by the fan func-
tional. For ε note that εp is primitive recursively definable in the modulus
of uniform continuity of p. Using Lemma 5.5 and 5.6 it is also not hard to
see that Ψ(Y, s) is equal to the fan functional at λα.Y (s@ α).

Remark 5.9. Instead of looking at the Cantor space, i.e., all sequences
bounded by one, one can also look, more generally, at the sequences bounded
by a fixed sequence. Our treatment above can be generalized to this setting:
Similarly as above one can define a general form of the fan functional Φ′

satisfying

Φ′(Y, γ) = min
n≥0

(
∀α, β ≤ γ(ᾱn = β̄n→ Y α = Y β)

)
,

where α ≤ γ is defined componentwise by ∀nα(n) ≤ γ(n).

6. Notes

We conclude this chapter with some remarks on definability and another
variant of bar recursion.

In [8], Bezem introduced his model M of strongly majorizable functionals
and showed that it is a model of Spector’s bar recursion. The novelty of the
model M was that it contains discontinuous functionals — even one at type
(N → N) → N which shows that the fan functional does not exist in M,
in particular, it is not definable by SBR. Berger and Oliva [6, 7] showed
that modified bar recursion exists in M and thus the fan functional is not
definable by MBR alone either. Moreover, they showed that MBR is not S1–
S9 computable over the Kleene-Kreisel continuous functionals; on the other

6. NOTES 75

hand, KBR (as well as SBR) is S1–S9 computable over the Kleene-Kreisel
continuous functionals but does not exist in M (cf. [24]), and thus neither
MBR defines KBR nor conversely. As already stated in the last section, the
fan functional is not S1–S9 computable over the Kleene-Kreisel functionals
and thus it is not definable by KBR alone. In [24, p. 57 ff.], it was also
shown that KBR defines SBR.

There are various open problems concerning interdefinability. We have
seen that OR defines EUR which in turn defines UR. What about the con-
verse directions? What is the exact relation between BBC, OR/EUR/UR,
and MBR? Does the wBBC functional define the BBC functional?

Recently, Escardó and Oliva [15] (inspired by [13]) have proposed an-
other variant of bar recursion called course-of-values bar recursion, which
can be written as

ΨY Hs =ρω s@ λn.H
(
s, n, λxρ.Y

(
ΨY H((ΨY Hs)(n) ∗ x)

))
.

In [14], it has been reported that this scheme is equivalent to modified bar
recursion.

CHAPTER 4

Proof Interpretations

This chapter is devoted to the computational content of proofs. Starting
from proofs in classical analysis (i.e., Peano Arithmetic with countable choice
or dependent choice), we extract an algorithm together with a proof that
the algorithm satisfies a specification depending on the formula we have
proven. Here our main techniques are negative translation, A-translation,
and modified realizability.

Notation. In this chapter we work in HAω (with base types as in Chap-
ter 3), i.e., we assume that the set X of predicate variables is empty. By
formula we always mean a HAω-formula; the same for predicates. A term is
always a term of HAω. All axiom schemes (e.g., AC, DC, OI, EUI, UI) are
restricted to the language of HAω.

It is convenient to allow arbitrary return types of level zero for open-,
update-, and extended update recursion. For example, for open recursion
this means that our defining equation becomes

OR≺,ρ,τ (Ro
≺) Ro

≺Fα =τ Fα
(
λn, xρ, β.if x ≺ αn thenRo

≺F (ᾱn ∗ x@ β)
)

where τ is a type with lev(τ) = 0 and ≺ is primitive recursive with HAω `
TI≺.

This poses no restriction because each type of level zero is primitive
recursively isomorphic to N, and thus it is not hard to see that the more
general scheme with return types of level zero are equivalent (in the sense
of Definition 4.1 in Chapter 3) to the respective scheme with only N as a
return type.

1. Negative Translation and A-Translation

As a first step, we will transform a proof in classical logic into one in
minimal logic. For this we use the well-known negative translation of Gödel
and Gentzen.

Definition 1.1. The negative translation Ag of a formula A is defined
by induction on A:

P g := ¬¬P if P is atomic,

(A ◦B)g := Ag ◦Bg for ◦ = ∧,→,
(A ∨B)g := ¬(¬Ag ∧ ¬Bg),

(∀xA)g := ∀xAg,

(∃xA)g := ¬∀x¬Ag.

Lemma 1.2. (1) `m ¬¬Ag → Ag

76

1. NEGATIVE TRANSLATION AND A-TRANSLATION 77

(2) If Γ `c A, then Γg `m Ag.

Proof. (1) is proved by induction on A and (2) by induction on the
derivation Γ `c A using (1) for stability. �

A-translation is an elegant and flexible method to show Π0
2-conservativity

of various classical formal systems over their intuitionistic counterparts. It
was independently introduced by Friedman [16] and Dragalin [11].

Definition 1.3. Let A be a formula. We define the A-translation BA
of the formula B by induction on B:

⊥A := A,

PA := P ∨A if P is atomic 6= ⊥,
(B ◦ C)A := BA ◦ CA for ◦ = ∧,∨,→,
(QxB)A := QxBA for Q = ∀, ∃,

where in the quantifier case, we assume that x is not free in A.

Lemma 1.4. (1) `m A→ BA
(2) If Γ `i B, then ΓA `m BA.

Proof. (1) is proved by induction on B, or by observing that A occurs
strictly positive in BA, and (2) is proved by induction on the derivation
Γ `i B using (1) for ex falso quodlibet. �

Lemma 1.5. Let B be a → ∀-free formula. Then:

(1) `m Bg ↔ ¬¬B,
(2) `i BA ↔ B ∨A.

Proof. Induction on B. �

Lemma 1.6. Let A be a → ∀-free formula.

(1) If Γ `i ΓA and Γ `i ¬¬A, then Γ `i A.
(2) If Γ `i Γg and Γ `i ΓA, then Γ `c A implies Γ `i A.

Proof. For (1) assume Γ `i ΓA and Γ `i ¬¬A. Then by Lemma 1.4
(2) we conclude ΓA `m (AA → A)→ A, and thus Γ `i (AA → A)→ A. But
by Lemma 1.5 (2) `i AA → A, so we conclude Γ `i A.

For (2) suppose Γ `i Γg ∪ ΓA and Γ `c A. Then Lemma 1.2 (2) gives
us Γg `m Ag, and thus Γ `i A

g by our assumption. Lemma 1.5 (1) yields
Γ `i ¬¬A, so the claim follows from (1). �

Definition 1.7. Let ∆ and Γ be sets of formulas. Then Γ is closed
under negative translation if Γ `i Γg. Γ is closed under ∆-translation if
Γ `i ΓA for all A ∈ ∆.

Corollary 1.8. Let ∆ be a set of → ∀-free formulas and Γ be closed
under negative- and ∆-translation. Then Γ `c A implies Γ `i A for all
A ∈ ∆.

2. REALIZABILITY INTERPRETATION 78

A Digression: Barr’s Theorem. As a further application of Lemma
1.6 we prove Barr’s Theorem following Palmgren [32]. A → ∀-free formula
A is called geometric. A geometric implication is a formula of the form
∀~x(A→ B) with A and B geometric. Finally, a geometric theory is a set of
formulas which are either geometric implications or geometric formulas.

Corollary 1.9 (Barr’s Theorem). Let Γ be a geometric theory and A
be a geometric implication. Then Γ `c A implies Γ `i A.

Proof. By instantiating the outer universal quantifiers with fresh vari-
ables and moving the premise of A to Γ, we may assume that A is geometric.
By Lemma 1.6, it suffices to show that Γ is closed under negative- and A-
translation. For geometric implications in Γ the former easily follows from
`m (B → C)→ ¬¬B → ¬¬C together with Lemma 1.5 (1). For the latter,
use `m (B → C)→ B ∨A→ C ∨A together with Lemma 1.5 (2). Similarly
for the geometric formulas in Γ. �

2. Realizability Interpretation

The modified realizability interpretation was introduced by Kreisel in
[26]. It provides a method to extract the computational content of proofs in
various systems of intuitionistic arithmetic. We proceed as follows. To each
formula A we assign a type (or a dummy symbol ε indicating no content)
τ(A) for the type of its potential realizers. Then we define the formula
tmrA where t is a term (or a dummy symbol if τ(A) = ε) which specifies
what it means that t is the computational content of A. The Soundness
Theorem guarantees that from a proof of A we can in fact obtain a term t
and a proof of tmrA.

Definition 2.1. The type τ(A) of a formula A is either a type or a
special symbol (called the nulltype) denoted by ε. Type constructors are
extended to the nulltype symbol as follows, for ρ either a type or ε:

ε× ρ := ρ× ε := ε→ ρ := ρ,

ε∗ := ρ→ ε := ε.

With these conventions, τ(A) is defined by induction on A:

τ(A0) := ε if A0 is atomic,

τ(A ∧B) := τ(A)× τ(B),

τ(A→ B) := τ(A)→ τ(B),

τ(∀xρA) := ρ→ τ(A),

τ(A ∨B) := N× (τ(A)× τ(B)),

τ(∃xρA) := ρ× τ(A).

Definition 2.2. Let A be a formula and t a term of type τ(A) if τ(A)
is a type and otherwise a special nullterm symbol ε. We extend application
to the nullterm symbol for s a term or ε by εs := ε and sε := s. The formula
tmrA (read as t realizes A, or t is a realizer of A) is defined by induction

3. REALIZING OPEN INDUCTION AND VARIANTS 79

on A:

εmrA0 := A0 if A0 is atomic,

tmr (A ∧B) := π0(t) mrA ∧ π1(t) mrB,

tmr (A→ B) := ∀xτ(A)(xmrA→ txmrB),

tmr∀xρA := ∀xρ txmrA,

tmr (A ∨B) := (π0(t) = 0→ π0(π1(t)) mrA)∧
(π0(t) 6= 0→ π1(π1(t)) mrB),

tmr ∃xρA(x) := π1(t) mrA(π0(t)),

where in the quantifier cases, we assume x /∈ FV(t). In the ∧-case the
following conventions apply. If τ(A) = ε, we set π0(t) := ε and π1(t) := t;
if τ(B) = ε, we set π0(t) := t and π1(t) := ε. Similar conventions for
projections apply in the ∨ and ∃ cases. Moreover, the expression ∀xεC(x)
should be read as C(ε).

Note that for any formula A, tmrA contains neither existential quanti-
fiers nor disjunctions.

Theorem 2.3 (Soundness). Let M be a minimal logic derivation in HAω

of A from assumptions u1 : C1, . . . , un : Cn.1 Then there exists a term [[M]]
and a minimal logic derivation M ′ in HAω of [[M]] mrA from assumptions
ū1 : x1 mrC1, . . . , ūn : xn mrCn. Moreover, the free variables of [[M]] are
among x1, . . . , xn and the free variables of terms in the ∀-eliminations and
∃-introductions of M .

Proof. See, e.g., [35] for a proof in our setting. The claim on the free
variables is easily obtained by inspecting the proof given there. �

3. Realizing Open Induction and Variants

In the present section we show that open recursion realizes open induc-
tion. This provides us with a direct method for extracting programs from
classical proofs using open induction. It turns out that realizing (extended)
update induction by (extended) update recursion is not directly possible, but
if we restrict (extended) update induction to certain pointwise open pred-
icates, this is realizable by (extended) update recursion. The restriction
of (extended) update induction to pointwise open predicates is still strong
enough to prove ACg, which results in an extraction method for classical
proofs using AC by (extended) update recursion.

This section is mainly based on [4], except that the treatment of ex-
tended update induction is our own (but along the lines of the treatment of
update induction given loc. cit.) and we have filled a gap in Theorem 4.4
loc. cit. (cf. Remark 3.7).

Let Σ be the set of all Σ-formulas.

Lemma 3.1. HAω as well as HAω augmented by each of open induction,
update induction, and extended update induction are closed under negative-
and Σ-translation.

1The u’s are assumption variables.

3. REALIZING OPEN INDUCTION AND VARIANTS 80

Proof. It is not hard to see that HAω is closed under negative- and
Σ-translation.

Let U(α) = C∀(α) → B∃(α) be open with C arbitrary and B ∈ Σ. Fix
A ∈ Σ. Clearly, the A-translation UA of an open predicate U is open again.
We now calculate (OI≺,U)A:(
∀α
(
∀n, xρ, γ(x ≺ αn→ U(ᾱn ∗ x@ γ))→ U(α)

)
→ ∀αU(α)

)
A

= ∀α
(
∀n, xρ, γ(x ≺ αn ∨A→ UA(ᾱn ∗ x@ γ))→ UA(α)

)
→ ∀αUA(α).

By Lemma 1.4 (1), we get(
x ≺ αn ∨A→ UA(ᾱn ∗ x@ γ)

)
↔
(
x ≺ αn→ UA(ᾱn ∗ x@ γ)

)
and thus OI≺,UA implies (OI≺,U)A.

Concerning the negative translation, we have

Ug(α) =
(
C∀(α)→ B∃(α)

)g
= ∀nCg(ᾱn)→ ¬∀n¬Bg(ᾱn)

↔ (Cg ∧ ¬Bg)∀(α)→ ⊥.
And hence we may assume that Ug is open again. Now it is easy to see that
OI≺,Ug implies

(
OI≺,U

)g
using the stability of ≺ (i.e., ¬¬x ≺ y → x ≺ y)

which is derivable in HAω because ≺ is primitive recursive.
Similarly for update and extended update induction. �

Corollary 3.2. Let � ∈ {OI,EUI,UI} and A be a Σ-formula. Then:

PAω +� `c ∀~xA⇒ HAω +� `i ∀~xA.
Proof. Immediate from Corollary 1.8 and the last lemma.2 �

Lemma 3.3. Let A be a Σ-formula. Then we have

HAω + Cont `m ∀α
(
A(α)→ ∃n∀β(ᾱn = β̄n→ A(β))

)
.

Proof. Induction on A. In all cases, except when A is atomic, the IH
suffices. If A is atomic, proceed as follows. First, using primitive recursive
isomorphism between N and any type of level zero, one generalizes Cont to
return types τ with lev(τ) = 0:

HAω + Cont `m ∀F ρ
ω→τ∀α∃n∀β ∈ ᾱn(F (α) =τ F (β)).

Recall that by the definition of Σ-formula, A is of the form P (~t) where P is
a predicate of arity (~σ) and lev(σ) = 0 for each σ ∈ ~σ. Combined with the
generalization of continuity, this easily yields the claim. �

Lemma 3.4. Let B be a Σ-formula.

(i) xmrB is equivalent (over HAω) to a Σ-formula.
(ii) HAω `m B ↔ ∃xxmrB.

Proof. Both claims are proved by induction on B, where for (i) one
uses:

xmr (A ∨B)↔ (π0(x) = 0 ∧ π0(π1(x)) mrA)∨
(π0(x) 6= 0 ∧ π1(π1(x)) mrB). �

2Observe that the involved translations do not alter the variable condition for ∀-
introductions.

3. REALIZING OPEN INDUCTION AND VARIANTS 81

Remark 3.5. Let U(αρ
ω
) = C∀(α) → B∃(α) be open, σ := τ(C),

and τ := τ(B). We identify a pair of sequences 〈α, δ〉 : ρω × σω with the
sequence λn.〈αn, δn〉 : (ρ × σ)ω of pairs. In the presence of extensionality
or η-equality, this identification is unproblematic. Let t be a term of type
ρω → σω → N× τ . Then, in E−PAω, the predicate

V (α, δ) := δmrC∀(α)→ t(α, δ) mrB∃(α)

is equivalent to an open (w.r.t. (ρ× σ)ω) predicate. Hence, we may assume
that V (α, δ) is open.

Proof. We have δmrC∀(α) = ∀n(δnmrC(ᾱn)); it is not hard to see
that this is equivalent to D∀(α, δ), where

D(sρ
∗
, uσ

∗
) :↔ s = 〈〉 ∨

(
s 6= 〈〉 ∧ u 6= 〈〉 ∧ last(u) mrC(tail(s))

)
,

last is defined such that last(u∗xσ) = x, and tail is such that tail(s∗xσ) = s.
Hence the premise is already of the form we need.

By Lemma 3.4 we may assume that

t(α, δ) mrB∃(α)

is a Σ-formula. Note that lev(τ) = 0 because B is a Σ-formula (cf. the
definition on p. 54). Lemma 3.3 implies for all α and δ:

t(α, δ) mrB∃(α)↔ ∃nW (ᾱn, δ̄n) = W ∃(α, δ),

where

W (uρ
∗
, vσ

∗
) := ∀β, ε(β ∈ u ∧ ε ∈ v → t(β, ε) mrB∃(β)).

Note that W is not → ∀-free, but using classical logic we can apply Re-
mark 3.3 from Chapter 3 to get the desired result. �

Theorem 3.6. There exists a closed term t such that

E−PAω + OI + Cont + OR(Ro) `c t(Ro) mr OI.

Proof. Let U(αρ
ω
) = C∀(α)→ B∃(α) be open where B is a Σ-formula

and let ≺ be a primitive recursive relation of arity (ρ, ρ) with HA `i TI≺.
Set τ := τ(B) and σ := τ(C). Observe that lev(τ) = 0 because B ∈ Σ.
Define ≺′ by 〈x1, y1〉ρ×σ ≺′ 〈x2, y2〉ρ×σ :↔ x1 ≺ x2. Using open recursion
for ≺′ we can define a functional Ψ satisfying

ΨFαρ
ω
δσ

ω
=N×τ

Fα
(
λn, xρ, γρ

ω
, ησ

ω
.if x ≺ αn then ΨF (ᾱn ∗ x@ γ)(δ̄n@ η)

)
δ.

(44)

We claim that Ψ realizes open induction. Let F be a realizer of the premise,
i.e.,

F mr∀α
[
∀n, xρ, γρω(x ≺ αn→ U(ᾱn ∗ x@ γ))→ U(α)

]
.(45)

Let V (α, δ) := δmrC∀(α)→ ΨFαδmrB∃(α). We have to verify

∀α, δ V (α, δ).

By Remark 3.5, we may assume that V is open, and thus can argue by open
induction. Fix α and δ with

(46) δmrC∀(α).

3. REALIZING OPEN INDUCTION AND VARIANTS 82

We have to prove ΨFαδmrB∃(α). Equation (45) unfolds to

(47) ∀α∀ξ

[
∀n, x, γ

(
x ≺ αn→ ξnxγmrU(ᾱn ∗ x@ γ)

)
→

∀δ
(
δmrC∀(α)→ FαξδmrB∃(α)

)]
.

So by (44), (47), and (46), it suffices to prove

λη.ΨF (ᾱn ∗ x@ γ)(δ̄n@ η) mrU(ᾱn ∗ x@ γ)

for all n, x, and γ with x ≺ αn. So assume x ≺ αn and

(48) ηmrC∀(ᾱn ∗ x@ γ).

We have to show

ΨF (ᾱn ∗ x@ γ)(δ̄n@ η) mrB∃(ᾱn ∗ x@ γ).

By the open induction hypothesis we have

∀m, y, ϕ, ψ
(
y ≺ αm→ V (ᾱm ∗ y @ ψ, δ̄m@ ϕ)

)
,

in particular, V (ᾱn ∗ x@ γ, δ̄n@ η). So it suffices to prove:

(δ̄n@ η) mrC∀(ᾱn ∗ x@ γ), i.e., ∀k (δ̄n@ η)kmrC
(
(ᾱn ∗ x@ γ)k

)
.

For k < n this amounts to proving δkmrC(ᾱk) which follows from (46).
For k ≥ n we need ηkmrC

(
(ᾱn ∗ x@ γ)k

)
which is immediate from (48).

This completes the proof. �

Remark 3.7. In [4], the last theorem is stated with HAω and intuition-
istic derivability instead of PAω and classical derivability. However, there
seems to be no other solution to prove that the predicate V (α, δ) from the
proof above is open than to use classical logic.3

Moreover, we have added extensionality in the verifying system in order
to make the identification concerning list of pairs. If one adds η-equality, it
should be possible to remove extensionality.

Definition 3.8. A predicate U(α) of the form

C∀(α)→ B∃(α)

is called pointwise open, where C is a predicate of arity (N, ρ), B a Σ-
predicate of arity (ρ∗), and C∀(α) := ∀nC(n, αn). Weak update induction

ŨI (weak extended update induction ẼUI) is UI (respectively EUI) restricted
to pointwise open predicates.

Analogously to Lemma 3.1 one proves:

Lemma 3.9. HAω + ŨI and HAω + ẼUI are closed under Σ-translation.

Theorem 3.10. For � ∈ {UI,EUI} and any Σ-formula B we have:

(1) HAω + �̃ `m ACg, and

(2) PAω + AC `c ∀~xB implies HAω + �̃ `i ∀~xB.

Proof. We only have to prove the statement for ŨI, as ẼUI implies

ŨI in HAω (this is proved along the lines of the proof of Lemma 3.5 in
Chapter 3). For (1) assume

3I am grateful to Ulrich Berger for this proposal.

3. REALIZING OPEN INDUCTION AND VARIANTS 83

(i) ∀n¬∀xρ¬A(n, x), and
(ii) ∀fN→ρ¬∀nA(n, fn).

We have to prove ⊥. For α : (N× ρ)ω define

C(α) := ∀n ∈ dom(α)A(n, α[n]) and U(α) := C(α)→ ⊥.

Observe that U is pointwise open and we have ¬∀αU(α) (e.g., ¬U(0(N×ρ)ω)).

Thus by ŨI, it suffices to prove

∀α
(
∀n∀x(n /∈ dom(α)→ U(αxn))→ U(α)

)
.

Fix α with

∀n∀x(n /∈ dom(α)→ U(αxn)), and(49)

C(α).(50)

To show: ⊥. By (50) and (ii), it suffices to show that α is total. Let n : N
and suppose n /∈ dom(α). By (i), it is enough to prove ¬A(n, x) for all xρ.
But A(n, x) and C(α) yield C(αxn). Therefore ⊥ by (49). This finishes the
proof of (1).

For (2) suppose PAω + AC `c B. By negative translation, we get HAω +

ACg `m Bg, and hence HAω + ŨI `i B
g by (1). But B is → ∀-free, so

Lemma 1.5 yields HAω+ŨI `i ¬¬B. Now the claim follows from Lemma 1.6

(1) using that HAω + ŨI is closed under Σ-translation by Lemma 3.9. �

Remark 3.11. Similarly to our pointwise open predicates, Berger [4]
considers 1- and 2-open predicates. These have the property that update
induction restricted to 1-open predicates (2-open predicates) proves the neg-
ative translation of AC (DC) in HAω.

Theorem 3.12. There exists a closed term t such that

E−PAω + EUI + Cont + EUR(Re) `c t(Re) mr ẼUI.

Proof. The proof is similar to the proof of Theorem 3.6. Let

U(α(N×ρ)ω) = C∀(α)→ B∃(α)

be pointwise open with a Σ-formula B. Set τ := τ(B) and σ := τ(C).
Let’s identify (N× (ρ× σ))ω with (N× ρ)ω × σω, i.e., partial sequences

of type ρ× σ with pairs of the form 〈α, δ〉 : (N× ρ)ω × σω (so α is a partial
sequence of type ρ). We also need the following notation for δ, η : σω and
α : (N× ρ)ω:

δ{η}α(n) :=

{
δn if n ∈ dom(α),

ηn otherwise.

So with the identification from above, we obtain

〈α, δ〉{〈β, η〉} = 〈α{β}, δ{η}α〉, and 〈α, δ〉(n)� 〈β, η〉(n) iff αn� βn.

Using extended update recursion we can define a functional Ψ satisfying

ΨFαδ =N×τ Fα
(
λn, β, η.if αn� βn then ΨF (α{β})(δ{η}α)

)
δ.

We now prove that Ψ realizes weak extended update induction. Let F be a
realizer for the premise, i.e.,

(51) F mr∀α
[
∀n∀β

(
αn� βn→ U(α{β})

)
→ U(α)

]
.

3. REALIZING OPEN INDUCTION AND VARIANTS 84

Define V (α, δ) := δmrC∀(α) → ΨFαδmrB∃(α). As in Theorem 3.6, we
conclude that V is open4 so we can argue by EUI. Fix α and δ with

(52) δmrC∀(α), i.e., ∀n δnmrC(n, αn).

To show: ΨFαδmrB∃(α). Equation (51) unfolds to

(53) ∀α, ξ
[
∀n, β

(
αn� βn→ ξnβmrU(α{β})

)
→ FαξmrU(α)

]
.

Together with (52) and the definition of Ψ, this amounts to proving for all
n and β with αn� βn:

(λη.Ψf(α{β})(δ{η}α)) mrU(α{β}).
So suppose αn� βn and

(54) ηmrC∀(α{β}), i.e., ∀k η(k) mrC(k, α{β}(k)).

By the extended update IH we have

∀ϕ,ψ,m
(
αm� ϕm→ V (α{ϕ}, δ{ψ}α)

)
,

in particular, V (α{β}, δ{η}α). So it is enough to prove δ{η}α mrC∀(α{β}),
i.e., δ{η}α(k) mrC(k, α{β}(k)) for all k. For k ∈ dom(α) this follows from
(52). Otherwise, if k /∈ dom(α), it follows from (54). �

Analogously to the last theorem one can also prove:

Theorem 3.13. There exists a closed term t such that

E−PAω + UI + Cont + UR(Ru) `c t(Ru) mr ŨI.

Theorem 3.14. Let A(xρ, yτ) be a Σ-formula with lev(τ) = 0.

(i) If PAω + OI `c ∀x∃yA(x, y), then there exists a term Φρ→τ with free

variables among ~Ψ such that

E−PAω + Cont + OI + OR(~Ψ) `c ∀xA(x,Φx).

(ii) If PAω + AC `c ∀x∃yA(x, y), then there exist terms Φρ→τ
1 and Φρ→τ

2

with FV(Φi) ⊆ ~Ψi such that:

E−PAω + Cont + EUI + EUR(~Ψ1) `c ∀xA(x,Φ1x), and

E−PAω + Cont + UI + UR(~Ψ2) `c ∀xA(x,Φ2x).

Proof. (i). Suppose PAω + OI `c ∀x∃yA(x, y). Because of ∃yA ∈
Σ, by Corollary 3.2 we obtain HAω + OI `i ∀x∃yA(x, y). The Soundness
Theorem for realizability yields a term t with free variables among ~x such
that HAω + ~xmr OI `i tmr∀x∃yA(x, y),5 i.e.,

HAω + ~xmr OI `i ∀xπ1(tx) mrA(x, π0(tx)).

By Lemma 3.4 (ii), we get

HAω + ~xmr OI `i ∀xA(x, π0(tx)),

and thus applying Theorem 3.6 gives us

E−PAω + Cont + OI + OR(~Ψ) `c ∀xA(x,Φx)

4Note that V is not necessarily pointwise open.
5Here ~xmrOI means ~xmr ~OI where ~OI are all instances of OI used in the proof.

4. REALIZING ACg AND DCg WITH MODIFIED BAR RECURSION 85

for a term Φ resulting from λx.π0(tx) by replacing ~x with the appropriate

realizers of open induction (which have all free variables among ~Ψ).
(ii). Suppose PAω + AC `c ∀x∃yA(x, y). Then by Theorem 3.10 (2)

HAω + ẼUI(ŨI) `i ∀x∃yA(x, y). The rest is proved analogously to (i) using
Theorem 3.12 (3.13 respectively). �

4. Realizing ACg and DCg with Modified Bar Recursion

In this section we show, following [6], how to obtain a realizer of the
negative translations of dependent choice and countable choice via modified
bar recursion. Instead of directly realizing the negative translated choice
axioms, we follow Spector [42], and reduce them to the so called double
negation shift

DNS ∀n¬¬A→ ¬¬∀nA
together with the non-translated axioms. One easily sees that

AC + DNS `m ACg and DC + DNS `m DCg.

To verify the correctness of our realizer, we need the following principle.

Definition 4.1. Relativized quantifier-free bar induction rBIqf is the
following scheme

∀α ∈ S∃nP (ᾱn) ∧
∀s ∈ S

(
∀xρ[S(s ∗ x)→ P (s ∗ x)]→ P (s)

)
∧

S(〈〉) →
P (〈〉),

where S(s) is an arbitrary and P (s) a quantifier-free predicate. We have
written α ∈ S for ∀nS(ᾱn), and s ∈ S for S(s). In fact, we will only use
a special case called relativized quantifier-free pointwise bar induction rBIptqf ,

which is given by

∀α ∈ S∃nP (ᾱn) ∧
∀s ∈ S

(
∀xρ[S(x, |s|)→ P (s ∗ x)]→ P (s)

)
→

P (〈〉)

where S(xρ, n) is an arbitrary and P (s) a quantifier-free predicate. Here
α ∈ S stands for ∀nS(αn, n), and s ∈ S for ∀i < |s|S(si, i).

Lemma 4.2. There exists a closed term H such that

HAω `m ∀~xH mr (A→ BA),

where the free variables of A→ BA are among ~x.

Proof. By Lemma 1.4 (1) `m A→ BA. Moreover, this can be derived
without the use of ∀-elimination rules and with ∃-introduction on closed
terms only6. Hence by Theorem 2.3, we obtain a closed term H such that
HAω `m H mr (A→ BA), and thus the claim follows. �

6This is proved by induction on B, where in the case B = ∃xρC(x) (x /∈ FV(A)) the
IH yields `m A→ CA(x). Hence substituting 0ρ for x in the proof gives `m A→ CA(0),
and thus `m A→ BA, where the ∃-introduction is with the term 0ρ.

4. REALIZING ACg AND DCg WITH MODIFIED BAR RECURSION 86

It is crucial that H in the last lemma is closed, i.e., does not depend on
the variables ~x.

Theorem 4.3. Let A be a formula with τ(A) = N. Then for each
instance of the A-translated double negation shift DNSA, there exists a term
t with the only free variable Φ, such that

HAω + rBIptqf + wMBR(Φ) + Cont `m tmr DNSA.

Proof. Consider an instance of DNS

∀n¬¬C(n)→ ¬¬∀nC(n).7

Then its A-translation is given by

∀n((CA(n)→ A)→ A)→ (∀nCA(n)→ A)→ A.

Let B := CA and ρ := τ(B). Assume we have realizers G and Y for the
premises, i.e.,

Gmr∀n
(
(B(n)→ A)→ A

)
and Y mr

(
∀nB(n)→ A

)
.(55)

with the types

G : N→ (ρ→ N)→ N and Y : ρω → N.

We have to find a realizer for A. By Lemma 4.2, there is a closed term H
with

∀nH mr (A→ B(n)).(56)

Using wMBR we can define Ψ as:

ΨY Gs =N Y
(
s@ λk.H(G(|s|, λx.ΨY G(s ∗ x)))

)
.(57)

For readability, let’s omit the arguments Y and G from Ψ. We now prove
that Ψ〈〉mrA using rBIptqf on the predicates

S(x, n) :↔ xmrB(n),

P (s) :↔ ΨsmrA.

We verify the requirements for rBIptqf :

(i) ∀α ∈ S∃nP (ᾱn). Let α ∈ S and n be a point of continuity of Y at α.
We have

α ∈ S ↔ ∀nαnmrB(n)↔ αmr∀nB(n).

Hence by (55) Y (α) mrA. But Ψ(ᾱn) = Y (ᾱn @ . . .) = Y (α) by
continuity.

7Of course, the actual instance of DNS is the universal closure of the displayed for-
mula. To obtain a realizer for the universal closure one simply lambda abstracts the
corresponding variables in the realizer below. The realizer does not contain these vari-
ables free, and hence the universal quantifiers of the universal closure may be regarded as
“computationally irrelevant”.

4. REALIZING ACg AND DCg WITH MODIFIED BAR RECURSION 87

(ii) ∀s ∈ S
(
∀xρ[S(x, |s|)→ P (s ∗ x)]→ P (s)

)
. Let s ∈ S with

∀x
(
S(x, |s|)→ P (s ∗ x)

)
.

We have to show P (s). We obtain:

∀x
(
xmrB(|s|)→ Ψ(s ∗ x) mrA

)
→ λx.Ψ(s ∗ x) mr

(
B(|s|)→ A

)
→ G(|s|, λx.Ψ(s ∗ x)) mrA by (55)

→ λk.H(G(|s|, λx.Ψ(s ∗ x))) mr∀nB(n) by (56)

→ s@ λk.H(G(|s|, λx.Ψ(s ∗ x))) mr∀nB(n) since s ∈ S
→ Y

(
s@ λk.H(G(|s|, λx.Ψ(s ∗ x)))

)
mrA by (55)

→ Ψ(s) mrA by (57)

→ P (s).

By rBIptqf we conclude P (〈〉), i.e., Ψ〈〉mrA. �

Lemma 4.4. There are closed terms t and t′ such that:

(i) HAω `m tmr AC,
(ii) HAω `m t′mr DC.

Proof. (i). By the definition of modified realizability:

tmr
(
∀n∃xA(n, x)→ ∃f∀nA(n, f(n))

)
= ∀z

(
∀nπ1(zn) mrA(n, π0(zn))→ ∀nπ1(tz)nmrA(n, π0(tz)n)

)
.

Hence we can take λz.〈λn.π0(zn), λn.π1(zn)〉 for t.
(ii). Similar for DC:

tmr
(
∀n∀xρ∃ρyA(n, x, y)→ ∃f∀nA(n, f(n), f(n+ 1))

)
= ∀z

(
∀n∀xπ1(znx) mrA(n, x, π0(znx))→
∀nπ1(tz) mrA(n, π0(tz)(n), π0(tz)(n+ 1))

)
.

Define ϕ by
ϕz0 := 0ρ and ϕz(n+ 1) := π0(zn(ϕzn)).

We leave it to the reader to verify that t := λz.〈ϕz, λn.π1(zn(ϕzn))〉 realizes
dependent choice. �

Theorem 4.5. Let A(xρ, nN) be an atomic formula and suppose

PAω + DC `c ∀xρ∃nA(x, n).

Then there exists a term t with free variables among ~Φ such that

HAω + rBIptqf + wMBR(~Φ) + Cont `m ∀xρA(x, tx).

Proof. Suppose we have a derivation

PAω + DC `c ∀xρ∃nA(x, n).

Applying the negative translation yields

HAω + DCg `m ∀x¬∀n¬¬¬A(x, n)

and hence
HAω + DNS + DC `m ¬∀n¬A(x, n).

5. NOTES 88

Set B(x) := ∃nA(x, n). Now B-translation yields

HAω + DNSB + DC `m ∀n
(
A(x, n) ∨B(x)→ B(x)

)
→ B(x).

Clearly, A(x, n) ∨B(x)→ B(x) is derivable and thus

HAω + DNSB + DC `m ∃nA(x, n).

Let ∀DNSB be the universal closures of the formulas in DNSB. We conclude

HAω + ∀DNSB + DC `m ∀x∃nA(x,m).

Note that τ(B) = N. Now, the Soundness Theorem for realizability, to-
gether with Theorem 4.3 and Lemma 4.4 yield a term t with free variables

among ~Φ such that

HAω + rBIptqf + wMBR(~Φ) + Cont `m tmr∀x∃nA(x, n).

By definition, tmr∀x∃nA(x, n) is equal to ∀xA(x, tx). This finishes the
proof. �

5. Notes

It should be noted that one can in fact compute witnesses with our
realizers. If one enriches Gödel’s T with defined constants and computation
rules according to the scheme one wants to use (e.g., a variant of open
recursion or modified bar recursion), the Adequacy Theorem of Chapter 2
ensures that we can effectively compute (with our operational semantics)
any term of type N. (Cf. Remark 1.4 in Chapter 3.)

From the point of view of reductive proof theory, the results from the last
two sections are rather limited: In Theorem 3.14, the verifying systems of
our realizers are classical and comprise the axiom of choice. In Theorem 4.5,
the verifying system contains HAω + rBIptqf — a theory where ACg is easily

derivable and thus, using negative translation, PAω+AC ` A implies HAω+
rBIptqf ` A

g for each formula A. Compared to this, Spector’s reduction to a

quantifier-free system seems to be a more “foundational” result (although
questionable from a constructive point of view, cf. [1, p. 370 f.]).

Nevertheless, from the point of view of program extraction, the empha-
sis lies on correct and usable algorithms. For this, the methods from the
last to sections seem to be more direct than the interpretation of Spector
which uses Dialectica interpretation instead of the more direct realizability
interpretation. A case study of a non-trivial example using modified bar
recursion together with an implementation in the proof assistant Minlog8

has been done by Seisenberger in [41].

8See http://www.minlog-system.de

http://www.minlog-system.de

Bibliography

1. Jeremy Avigad and Solomon Feferman, Gödel’s functional (“Dialectica”) interpreta-
tion, Handbook of Proof Theory (S. Buss, ed.), Stud. Logic Found. Math., vol. 137,
North–Holland, Amsterdam, 1999, pp. 337–405.

2. Stefano Berardi, Marc Bezem, and Thierry Coquand, On the computational content
of the axiom of choice, The Journal of Symbolic Logic 63 (1998), no. 2, 600–622.

3. Ulrich Berger, Totale Objekte und Mengen in der Bereichstheorie, Ph.D. thesis, Ma-
thematisches Institut der Universität München, 1990.

4. , A computational interpretation of open induction, Proceedings of the Nine-
teenth Annual IEEE Symposium on Logic in Computer Science (F. Titsworth, ed.),
IEEE Computer Society, 2004, pp. 326–334.

5. , Continuous semantics for strong normalization, New Computational
Paradigms, First Conference on Computability in Europe, CiE 2005, Amsterdam,
The Netherlands, June 8-12, 2005, Proceedings (S.B. Cooper, B. Löwe, and L. Toren-
vliet, eds.), Lecture Notes in Computer Science, no. 3526, Springer Verlag, Berlin,
Heidelberg, New York, 2005, pp. 23–34.

6. Ulrich Berger and Paulo Oliva, Modified bar recursion and classical dependent choice,
Logic Colloquium ’01, Proceedings of the Annual European Summer Meeting of the
Association for Symbolic Logic, held in Vienna, Austria, August 6 - 11, 2001 (M. Baaz,
S.D. Friedman, and J. Kraijcek, eds.), Lecture Notes in Logic, vol. 20, Springer Verlag,
Berlin, Heidelberg, New York, 2005, pp. 89–107.

7. , Modified bar recursion, Mathematical Structures in Computer Science 16
(2006), 163–183.

8. Marc Bezem, Strongly majorizable functionals of finite type: a model for barrecursion
containing discontinuous functionals, The Journal of Symbolic Logic 50 (1985), 652–
660.

9. , Equivalence of bar recursors in the theory of functionals of finite type, Archive
for Mathematical Logic 27 (1988), 149–160.

10. Thierry Coquand, Constructive topology and combinatorics, Constructivity in Com-
puter Science (J. Paul Myers Jr. and Michael J. O’Donnell, eds.), Lecture Notes in
Computer Science, vol. 613, Springer Verlag, Berlin, Heidelberg, New York, 1992,
pp. 159–164.

11. Albert Dragalin, New kinds of realizability, Abstracts of the 6th International Congress
of Logic, Methodology and Philosophy of Sciences (Hannover, Germany), 1979, pp. 20–
24.

12. Yuri L. Ershov, Model C of the partial continuous functionals, Logic Colloquium 1976
(R. Gandy and M. Hyland, eds.), North–Holland, Amsterdam, 1977, pp. 455–467.

13. Mart́ın H. Escardó, Exhaustible sets in higher-type computation, Logical Methods in
Computer Science 4 (2008), no. 3:3, 1–37.

14. Mart́ın H. Escardó and Paulo Oliva, On variants of modified bar recursion, Slides of
a talk at Domains IX, Brighton, September 2008.

15. , Selection functions, bar recursion, and backward induction, To appear in
Mathematical Structures in Computer Science, 2009.

16. Harvey Friedman, Classically and intuitionistically provably recursive functions,
Higher Set Theory (D.S. Scott and G.H. Müller, eds.), Lecture Notes in Mathematics,
vol. 669, Springer Verlag, Berlin, Heidelberg, New York, 1978, pp. 21–28.

17. Jean-Yves Girard, Interprétation functionelle et élimination des coupures de l’arith-

métique d’ordre supérieur, Thèse de Doctorat d’État, Université Paris VII, 1972.

89

BIBLIOGRAPHY 90

18. Kurt Gödel, Über eine bisher noch nicht benützte Erweiterung des finiten Standpunkts,
Dialectica 12 (1958), 280–287.

19. , On a hitherto unexploited extension of the finitary standpoint, Journal of
Philosophical Logic 9 (1980), no. 2, 133–142.

20. David Hilbert, Über das Unendliche, Mathematische Annalen 95 (1926), 161–190.
21. William A. Howard, Functional interpretation of bar induction by bar recursion, Com-

positio Mathematica 20 (1968), 107–124.
22. William A. Howard and Georg Kreisel, Transfinite induction and bar induction of

types zero and one, and the role of continuity in intuitionistic analysis, The Journal
of Symbolic Logic 31 (1966), no. 3, 325–358.

23. Stephen C. Kleene, Countable functionals, Constructivity in Mathematics (A. Heyting,
ed.), North–Holland, Amsterdam, 1959, pp. 81–100.

24. Ulrich Kohlenbach, Theorie der majorisierbaren und stetigen Funktionale und ihre
Anwendung bei der Extraktion von Schranken aus inkonstruktiven Beweisen: effektive
Eindeutigkeitsmodule bei besten Approximationen aus ineffektiven Eindeutigkeitsbe-
weisen, Ph.D. thesis, Johann Wolfgang Goethe-Universität, Fachber. Math., Frankfurt
am Main, 1990.

25. Georg Kreisel, Mathematical significance of consistency proofs, The Journal of Sym-
bolic Logic 23 (1958), no. 2, 155–182.

26. , Interpretation of analysis by means of constructive functionals of finite types,
Constructivity in Mathematics (A. Heyting, ed.), North–Holland, Amsterdam, 1959,
pp. 101–128.

27. Guiseppe Longo and Eugenio Moggi, The hereditary partial effective functionals and
recursion theory in higher types, The Journal of Symbolic Logic 49 (1984), no. 4,
1319–1331.

28. Per Martin-Löf, The domain interpretation of type theory, Talk at the workshop on
semantics of programming languages, Chalmers University, Göteborg, August 1983.

29. Robin Milner, Models of LCF, Technical Report Memo Aim-186, Stanford Artificial
Intelligence Laboratory, January 1973.

30. C.St.J.A. Nash-Williams, On well-quasi-ordering finite trees, Proc. Cambridge Philo-
sophical Society 59 (1963), 833–835.

31. Dag Normann, The continuous functionals, Handbook of Computability Theory
(E. Griffor, ed.), Stud. Logic Found. Math., vol. 140, North–Holland, Amsterdam,
1999, pp. 251–275.

32. Erik Palmgren, An intuitionistic axiomatisation of real closed fields, Mathematical
Logic Quarterly 48 (2002), no. 2, 297–299.

33. Gordon D. Plotkin, LCF considered as a programming language, Theoretical Computer
Science 5 (1977), 223–255.

34. Jean-Claude Raoult, Proving open properties by induction, Information Processing
Letters 29 (1988), 19–23.

35. Helmut Schwichtenberg, Proof theory, Notes from a lecture course, Universität
München, 2006.

36. , Recursion on the partial continuous functionals, Logic Colloquium 2005
(C. Dimitracopoulos, L. Newelski, D. Normann, and J. Steel, eds.), Lecture Notes
in Logic, vol. 28, Association for Symbolic Logic, 2007, pp. 173–201.

37. Helmut Schwichtenberg and Stanley S. Wainer, Proofs and computations, Book-
manuscript, to appear: Springer Verlag, 2009.

38. Dana S. Scott, A type-theoretical alternative to ISWIM, CHUCH, OWHY, Manuscript,
Oxford University, published as [40], 1969.

39. , Domains for denotational semantics, Proceedings of the 9th Colloquium on
Automata, Languages and Programming (E. Nielsen and E.M. Schmidt, eds.), LNCS,
vol. 140, Springer Verlag, Berlin, Heidelberg, New York, 1982, pp. 577–613.

40. , A type-theoretical alternative to ISWIM, CHUCH, OWHY, Theoretical Com-
puter Science 121 (1993), no. 1-2, 441–440.

41. Monika Seisenberger, Programs from proofs using classical dependent choice, Annals
of Pure and Applied Logic 158 (2008), no. 1-3, 90–110.

BIBLIOGRAPHY 91

42. Clifford Spector, Provably recursive functionals of analysis: a consistency proof of
analysis by an extension in current intuitionistic mathematics, Recursive Function
Theory (F.D.E. Dekker, ed.), Proc. Symposia in Pure Mathematics, vol. 5, American
Mathematical Society, Providence, Rhode Island, 1962, pp. 1–27.

43. Viggo Stoltenberg-Hansen, Ingrid Lindström, and Edward Griffor, Mathematical the-
ory of domains, Cambridrige Tracts in Theoretical Computer Science, vol. 22, Cam-
bridge University Press, 1994.

44. William W. Tait, Normal form theorem for bar recursive functions of finite type,
Proceedings of the Second Scandinavian Logic Symposium (J.E. Fenstad, ed.), North–
Holland, Amsterdam, 1971, pp. 353–367.

45. Masako Takahashi, Parallel reductions in λ-calculus, Information and Computation
118 (1995), 120–127.

46. Terese, Term rewriting systems, Cambridge University Press, 2003, Ed. by M. Bezem,
J.W. Klop, and R. de Vrijer.

47. Anne S. Troelstra (ed.), Metamathematical investigations of intuitionistic arithmetic
and analysis, Lecture Notes in Mathematics, vol. 344, Springer Verlag, Berlin, Hei-
delberg, New York, 1973.

48. Anne S. Troelstra and Helmut Schwichtenberg, Basic proof theory, 2nd ed., Cam-
bridrige Tracts in Theoretical Computer Science, vol. 43, Cambridge University Press,
2000.

49. Helmut Vogel, Ein starker Normalisationssatz für die bar-rekursiven Funktionale,
Archiv für Mathematische Logik und Grundlagenforschung 18 (1976), 81–84.

Index

A-translation BA, 77
adequacy, 34
algebra, 5
α⊥, 43
approximable map, 18
arity, 6
atoms, see also tokens
axiom

compatibility, 14
equality, 14
induction, 13
of choice AC, 42
of dependent choice DC, 41

bar, 47
infinite, 48

bar induction
for decidable bars BID,BI′D, 48
for monotone bars BIM , 49

bar recursion
course-of-values, 75
Kohlenbach’s KBR, 50
modified MBR, 51
Spector’s SBR, 47
weak modified wMBR, 51

Barr’s Theorem, 78
BBC functional, 51

weak, 51

Cρ, 20
c.i.s., see also coherent information

system
canonical embedding embρ, 46
Cantor space, 69
closed

under ∆-translation, 77
under negative translation, 77

coherent information system, 16
complete expansion, 9
computation rule, 7
confluent, 8
consistency relation ,̂ 16
consistent, 17
constructor, 6
constructor pattern, 7

constructor types, 5
continuity axiom Cont, 43

deductive closure x, 17
deductively closed, 17
definable, see also defines
defined constant, 6
defines, 59
denotation

of a term [[M]]θ, 29
of a closed term [[λ~xM]], 23

Density Theorem, 39
depth dp, 37
diamond property, 8
directed, 19

entailment relation `, 16
environment

of ideals, 29
of total ideals, 40

equivalence
of formal neighborhoods ≈, 24
of total ideals ∼ρ, 35

equivalent, 59
ex falso quodlibet, 14
exponent BA, 17
extended update induction EUI, 56
extended update recursion EUR, 57
extensionality, 15

fan functional, 69
formal neighborhoods, 17
formulas, 13
FV, 3

Gödel’s T , 12
geometric, 78

implication, 78
theory, 78

height, 23
D-, 23

Heyting Arithmetic HAω, 14

ideal, 18

92

INDEX 93

KBR, 50
KBR′, 72
Kleene-Kreisel continuous functionals

Gρ, 40

level lev, 45
lexicographical extension ≺lex, 54
linear, 7

MBR, 51
minimization functional µ̃, 62
model relation |=, 41
modified realizability, 78

soundness, 79

negative translation Ag, 76
normal, 8
normal form, 8
nullterm ε, 78
nulltype ε, 78

open induction OI, 54
open predicate, 54

pointwise, 82
open recursion OR, 56
operational interpretation M ∈ [a], 32
operational semantics −→d, 31

pairing 〈·, ·〉, 45
parallel reduction =⇒, 9
partial continuous functionals |Cρ|, 21
partial sequence, 56
PCF , 11
Peano Arithmetic PAω, 14
point of continuity, 43
predicate, 13
predicate variables X , 13
primitive recursion, see also structural

recursion
primitive recursive predicate, 45
principle of finite support, 19
programming language for computable

functionals, see also PCF
progressive, 54
projections, 12, 45

realizer, see also modified realizability
realizes, see also modified realizability
recursion operator, 12
redex
β-, 8
P-, 8

reduct, 8
immediate, 8

reduction relation −→βP , 8

SBR, 47
Scott topology, 18
Scott-Ershov domain, 19

search functional ε, 70
Σ-formula, 54
simultaneously defined, 5
stability, 14
structural recursion, 12
substitution, 3

admissible, 7
of formal neighborhoods, 22

system of computation rules ., P, 7
system of types B, 6

term, 7
constructor, 7

tokens, 17
extended, 20

total ideal Gρ, 35
transfer principles, 41
transfinite induction TI≺, 54
transfinite recursion TR≺, 55
type, 5

arrow, 5
base, 5
finitary, 6
ground, 5
inhabited, 37
µ-, 5
parameter, 5
separable, 39
τ(A), 78

update αxn, 56
update induction UI, 56
update recursion UR, 56

weak extended update induction ẼUI,
82

weak update induction ŨI, 82
wMBR, 51

X -assignment, 40

Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 14. Januar 2010

(Simon Huber)

	Introduction
	Outline of the Contents
	Preliminaries

	Chapter 1. Syntax
	1. Types
	2. Terms
	3. Constructor Patterns and Computation Rules
	4. Reduction
	5. Examples: Plotkin's PCF and Gödel's T
	6. Heyting and Peano Arithmetic

	Chapter 2. Semantics
	1. Coherent Information Systems
	2. Partial Continuous Functionals
	3. Denotational Semantics
	4. Preservation of Values
	5. Operational Semantics and Computational Adequacy
	6. Totality and the Density Theorem
	7. Kleene-Kreisel Continuous Functionals
	8. Notes

	Chapter 3. Recursion
	1. Bar Recursion and Variants
	2. Modified Bar Recursion
	3. Open Recursion and Variants
	4. Definability
	5. Fan Functional
	6. Notes

	Chapter 4. Proof Interpretations
	1. Negative Translation and A-Translation
	2. Realizability Interpretation
	3. Realizing Open Induction and Variants
	4. Realizing ACg and DCg with Modified Bar Recursion
	5. Notes

	Bibliography
	Index

